Look at your patients and clients shoes!

Can you see the varus cant to the heel counter of these shoes? This is an Asics  Gel  Kayano; a shoe we seem to see manufacturers defects in frequently. This could be a good thing for an overpronator, but could be a bad thing for a supinator. With a drop ( ramp delta) of 13 mm, and a narrow toe box, we are not huge fans…

Fore foot types: Differences between forefoot varus and forefoot supinatus.

Certainly this can be a contraversial topic. Perhaps this will help clear up some questions.

Supination of the forefoot that develops with adult acquired flatfoot is defined as forefoot supinatus. This deformity is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous deformity that induces subtalar joint pronation, whereas forefoot supinatus is acquired and develops because of subtalar joint pronation (1).

A Forefoot Varus induces STJ pronation whereas a Forefoot Supinatus is created because of STJ pronation (2).

As the foot experiences increased subtalar joint (STJ) pronation moments during weightbearing activities (as in forefoot supinatus) , the medial metatarsal rays will be subjected to increased dorsiflexion moments and the lateral metatarsal rays will be subjected to decreased dorsiflexion moments. Over time, this increase in STJ pronation moments will tend to cause a lengthening of the plantar ligaments and medial fibers of the central component of the plantar aponeurosis and a shortening of the dorsal ligaments in the medial longitudinal arch. As a result, the influence of increased STJ pronation moments occurring over time during weightbearing activities will tend to cause the following (3):

1. An increase in inverted forefoot deformity.
2. A decrease in everted forefoot deformity.
3. A change in everted forefoot deformity to either a perpendicular forefoot to rearfoot relationship or to an inverted forefoot deformity.

More on the forefoot tomorrow evening on onlinece.com: Biomechanics 309. Join us!

1. Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009. Forefoot supinatus. Evans EL1, Catanzariti AR2.

2. https://kenva.wordpress.com/…/…/forefoot-varus-or-supinatus/

3. http://www.podiatry-arena.com/podiatry-forum/showthread.php…

Forefoot Varus or Forefoot Supinatus?

Forefoot varus is a fixed, frontal plane deformity where the forefoot is inverted with respect to the rearfoot. Forefoot varus is normal in early childhood, but should not persist past 6 years of age (i.e. when developmental valgus rotation of forefoot on rearfoot is complete, and plantar aspects of fore- and rearfoot become parallel to, and on same plane as, one another (1)

Forefoot supinatus is the supination of the forefoot that develops with adult acquired flatfoot deformity. This is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. (2)

A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous where a forefoot supinatus is acquired and develops because of subtalar joint pronation.

“Interestingly, only internal rotation of the hip was increased in subjects with FV – no differences were present in hip adduction and knee abduction between subjects with and without FV. The authors nevertheless conclude that FV causes significant changes in mechanics of proximal segments in the lower extremity and speculate that during high-speed weight-bearing tasks such as running, the effects of FV on proximal segments in the kinetic chain might be more pronounced.”

We wonder if the folks in this study had a true forefoot varus, or actually a forefoot supinatus (3).

The Gait Guys

1. Illustrated Dictionary of Podiatry and Foot Science by Jean Mooney © 2009 Elsevier Limited.

2. Evans EL1, Catanzariti AR2. Forefoot supinatus.
Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009.

3. Scattone Silva R1, Maciel CD2, Serrão FV3. The effects of forefoot varus on hip and knee kinematics during single-leg squat. Man Ther. 2015 Feb;20(1):79-83. doi: 10.1016/j.math.2014.07.001. Epub 2014 Jul 12.

Forefoot Varus Anyone?

Forefoot varus appears to move the center of gravity medially while walking. Nothing earthshaking here, but nice to see the support of the literature.

“The most medial CoP of the row and CoP% detected increased medial CoP deviation in FV ≥ 8°, and may be applied to other clinical conditions where rearfoot angle and CoP of the array after initial heel contact cannot detect significant differences.”

We will be talking about foot types this week on onlinece.com; Wednesday 8 EST, 7 CST, 6MST, 5 PST Biomechanics 314. Hope to see you there!

J Formos Med Assoc. 2015 May 5. pii: S0929-6646(15)00132-1. doi: 10.1016/j.jfma.2015.03.004. [Epub ahead of print]
Analysis of medial deviation of center of pressure after initial heel contact in forefoot varus.

picture from: http://forums.teamestrogen.com/showthread.php?t=46901

Whoa!  It is amazing what the human frame can withstand…

This 300 pound individual is retired from working with tow trucks from a towing company as well as a service station.   He believes working with the tow trucks, particularly jumping out of them contributed to the O.A. of the ankles.

He has osteoarthritic ankles, a rear foot varus of 15 degrees left side, 5 degrees right.  He is currently in the New Balance 1040 shoe.  He would like some new orthotics built. He Fowler tests positive on his current orthotic set up (with the foot on the ground, dorsiflex the foot at the 1st metatarsal phalangeal joint (ie big toe joint), simulating terminal stance; the orthotic should hug the arch through the range of motion; ie about 45-60 degress of great toe dorsiflexion, which he incredibly has). He is unable to one leg stand because of the O.A. on the ankles and pain.

He has bi-lat. internal tibial torsion, Left > Right and moderate tibial varum, L > R. He has very little internal rotation of the hips bi-lat. Ankle dorsiflexion is about 5 degrees bilaterally.

He is currently in an older New Balance motion control shoe. You can see how he has worn the shoes into varus. More neutral shoes hurt his feet; attempts to put his rear foot into valgus causes increased ankle pain. Exercise compliance is minimal.

WHAT WOULD YOU DO?

The Gait Guys. Teaching and educating with each post.

Footprints in the sand. What do they tell us?

They say that sometimes the silences speak volumes. Take a look at these prints and see if you see the following:

  • more pressure on the forefoot, right greater than left
  • more pressure on the lateral aspects of the forefeet
  • an increased progression angle on the right, compared to the left
  • judging from the step length, this person either has really long legs or was running
  • the heel seems to hit the ground slightly more on the right
  • judging from the sole pattern, they are most likely wearing an Inov8 shoe

Or, we can comment on what WAS NOT seen:

  • less pressure on the rearfoot, indicating a forefoot strike, or extremely tight posterior compartments
  • less pressure on the medial aspects of the forefeet, indicating inefficient push off, since they are not able to get their weight to the medial tripod
  • an more normal progression angle on the left, possibly indicating better mechanics there
  • this person IS NOT a heel striker, but seems to have a greater range of dorsiflexion available to them on the right, most likely with more ankle rocker
  • judging from the sole pattern, they are most likely wearing an Inov8 shoe

Just like in the movie “Swordfish”, John Traviolta’s character comments that “It’s all about perception”.

So, what can we surmise from our deductions?

  • less pressure on the rearfoot, indicating a forefoot strike, or extremely tight posterior compartments

this individual may have a loss of ankle rocker

  • less pressure on the medial aspects of the forefeet, indicating inefficient push off, since they are not able to get their weight to the medial tripod

we are probably looking for someone who has a fore foot varus deformity. This is often accompanied by increased tibial varum

  • n more normal progression angle on the left, possibly indicating better mechanics there

the difference in progression angle may indicate this person has a torsional deformity and/or limited internal rotation of the hips

  • this person IS NOT a heel striker, but seems to have a greater range of dorsiflexion available to them on the right, most likely with more ankle rocker

again, look for someone who has impaired ankle rocker, or limited (at least assymetrical) ankle dorsiflexion

Yes, even when we are on vacation, we are looking at gait, because it is everywhere and affects all forms of human life and behavior.

The Gait Guys. Walking in the sand. Looking for the subtle clues. Teaching you in each and every post

This is a follow up to our last post on forefoot varus, available here.

Remember, ou are looking at a person with an uncompensated, rigid fore foot varus. This individual is not able to get the head of the 1st ray to the ground at all, and he has a Morton’s foot to boot (no pun intended). 

So, what do we see?

  • 1st of all, you will note his 2nd metatarsal is longer than his 1st. When he goes up on his toes, you see his foot invert and will see curling of the toes 3-5 in an attempt to stabilize the foot. 
  • You will also see his foot looks pretty flat. He has an arch (you can see it as he goes up onto his toes) and the “flatness” is actually due to the fore foot varus.
  • You will see a bunion forming bilaterally, due again to the uncompensated fore foot varus, and his inability to anchor the head of the 1st metatarsal. 
  • The posterior view shows relatively vertical calcaneii (no no rearfoot valgus), but you can really see the effects of the fore foot varus, with medial fall of the midfoot.
  • note the prominent “pump bumps” on the lateral calcaneus biaterally, from chronic rubbing on the shoes. 
The Gait Guys. Getting you closer to being a foot nerd with each post.
 

Lost? Having trouble with all these terms and nomenclature? Take our national shoe fit program, available by clicking here.

The Gait Guys. Uber foot geeks. Still bald and good looking. Separating the wheat from the chaff, with each and every post.

What foot type do we have here?


OK, so this gentlemen comes in with knee pain, L > R and an interesting “jog” in his gait from midstance to toe off (ie, the 2nd half of his gait cycle). 

A few questions for you:

Q: What foot type does he have?

A: Forefoot valgus, L > R. The forefoot is everted with respect to the rear foot. Need to brush up? click here and here for a refresher

Q: What is the next question you should be asking?

A: Is it a rigid deformity (ie the 1st ray is “stuck” in plantar flexion or flexible (ie, the 1st ray can move into dorsiflexion. Hint: look for a callus under the base of the big toe in a rigid deformity

Q: Which is the best type of shoe for this person? Motion control, guidance or neutral?

A: most likely, neutral. A motion control shoe will usually keep the foot in more relative inversion, and that may be a bad thing for this person. Mobility is key, so a flexible shoe would probably be best.

Q: Would a conventional or zero drop shoe be appropriate?

A: A conventional shoe, with a higher ramp delta, will most likely accentuate the deformity (especially if it is a rigid deformity). This is for at least 2 reasons: 1. plantar flexion is part of supination (due to the higher heel; remember plantar flexion, inversion and adduction) and this will make the foot more rigid. 2. The medial side of the foot will be hitting the ground 1st; if the 1st ray is in plantar flexion, this will be accentuated. 


The Gait Guys. Foot Nerds to the max. Convincing you to join forces with us in spreading the word and gait literacy. LIke this post? tell others! Don’t like this post? Tell us!

Need to know more? Take our National Shoe Fit Program and get certified! email us at thegaitguys@gmail.com for details.

Take a  look at these dogs

Take a good look at these shoes. Notice the wear at the heel counter. Did you notice the varus cant  of the rear foot. Good! Did you carefully inspect where the upper was attached to the midsole? Now did you notice that upper is canted in varus as well? This person DID NOT have a rear (or forefoot) varus.

Hmmm. Maybe the varus canting of the upper caused the wear on the outsole? We doubt it; most likely it was the other way around.

What sort of  symptoms so you think they had?

Do you think medial or lateral knee pain?

 Could be either.

  • Lateral; knee pain from stretch on the lateral side of the knee at the lateral collateral ligament or
  • medial from compression of the medial condle of the femur and medial tiibial plateau.

Anything else?

How about pain on the outside of the hip? Canting the foot laterally has a tendency to externally rotate the lower leg and thigh. This may cause shortening of the gluteals (max and post fibers of the min); difficulty accessing the gluteus minimus (its a medial rotator), shortening of the deep 6 external rotators, difficulty accessing the vastus medialis (external rotator when foot is on the ground), and the list goes on.

What’s the fix?

New shoes. Pay attention when you buy shoes. Put them up on a counter at eye level and inspet them closely. We can’t tell you how many defects we see on a daily basis; too many to count. One time at a shop, we needed to go through 10 pair before we had a good right and left.

The Gait Guys. Bald. Good looking. Smart. Increasing your “Shoe IQ” every day.

 Want to  know more? Take our National Shoe Fit Certification Program. It’s the only one of its type and the only one certified by the International Footwear and Gait Education Council. Drop us an email at: thegaitguys@gmail.com for more details or go to our payloadz store  (click here) and download it today.

All material copyright 2013 The Gait Guys/ The Homunculus Group.

Do you think I need to replace my shoes?

These shoes appear to be well past their prime, to say the very least ! These poor dogs have the rear and forefoot varus “worn” right into them. You can see this represented particularly easily from the front, look at the lateral sloping of the shoe. It almost appears as if his foot could slide off the outside edge of the shoe. One can easily postulate that an inversion ankle sprain is just one unfortunate step away.

It looks like this medially posted shoe is not working for this fellow (you can see the medial post on the inner edge of the EVA midsole if you look carefully)  If you have questions on the “flare”?/post click here) . The client told us that they are “only a few years old” and planned on running one more 1/2 marathon in them this spring! Of course we mentioned they should put a office visit on the books the day after that race, because their ankles and knees were likely going to need it !

One can only imagine the lateral (genu varum) forces being placed on the knees, and who knows what kinds of increased shear forces are imparted into the menisci.  The lateral (inversion / varus) forces are going to impart a tendency of external rotation into the hips, and if one is busy externally rotating they are not going to internally rotate the hips when it is necessary to as the pelvis passes over the foot in midstance.  Additionally, an inverted /varus postured foot is more rigid because it is supinated which makes for a poor pronation/shock absorbing foot during the accomodative phase of the stance phase.

There are many more issues we could discuss here. But this was never meant to turn into a diatribe on specific biomechanical flaws, not this time at least.  Just remember this, whatever biomechanical flaws your feet have (and most of us have them) will eventually be pressed into the EVA foam of your shoes. Meaning, in time your shoes will reflect your aberrant flaws biomechanically.  And these newly built-into-the-shoe problems will now magnify the foot’s challenges and can accelerate pathology locally and globally.  Change your shoes often and as we have suggested in older blog posts, please consider having 2 shoes in your regular rotation.  One shoe being older and one being newer. We suggest starting an new shoe into the rotation once the old shoe has 200-250 miles and then alternating shoes every other day.  This way the foot is never seeing an older more deformed shoe for more than a day before getting some correction.  The point here, don’t let a shoe get 400-500 miles on it, in all its deformed glory, and then suddenly force the foot into a sudden biomechanical correction with a brand new shoe.  Abrupt changes lead to abrupt biomechanical demands on the system, so limit them and limit your risk for injury.

PS: Note the nice after-market “venting feature” in the right shoe near the little toe.

What some folks will try to do to save a few bucks…

Ivo and Shawn, The Gait Guys