Pain on the outside of one leg, inside of the other. 

Whenever you see this pattern of discomfort, compensation is almost always at play and it is your job to sort it out. 

This patient presents with with right sided discomfort lateral aspect of the right fibula and in the left calf medially. Pain does not interfere with sleep.  He is a side sleeper 6 to 8 hours. His shoulders can become numb; left shoulder bothers him more than right.

PAST HISTORY: L shoulder surgery, rotator cuff with residual adhesive capsulitis. 

GAIT AND CLINICAL EVALUATION: see video. reveals an increased foot progression angle on the right side. Diminished arm swing from the right side. A definite body lean to the right upon weight bearing at midstance on that side.

He has external tibial torsion bi-lat., right greater than left with a right short leg which appears to be at least partially femoral. Bi-lat. femoral retrotorsion is present. Internal rotation approx. 4 to 6 degrees on each side. He has an uncompensated forefoot varus on the right hand side, partially compensated on the left. In standing, he pronates more on the left side through the midfoot. Ankle dorsiflexion is 5 degrees on each side. 

trigger points in the peroneus longus, gastroc (medial) and soles. 

Weak long toe extensors and short toe flexors; weak toe abductors. 

pathomechanics in the talk crural articulation b/l, superior tip/fib articulation on the right, SI joints b/l

WHAT WE THINK:  

1.    This patient has a leg length discrepancy right sided which is affecting his walking mechanics. He supinates this extremity as can be seen on video, especially at terminal stance/pre swing (ie toe off),  in an attempt to lengthen it; as a result, he has peroneal tendonitis on the right (peroneus is a plantar flexor supinator and dorsiflexor/supinator; see post here). The left medial gastroc is tender most likely due to trying to attenuate the midfoot pronation on the left (as it fires in an attempt to invert the calcaneus and create more supination). see here for gastroc info

2.    Left shoulder:  Frozen shoulder/injury may be playing into this as well as it is altering arm swing.

WHAT WE DID INITIALLY (key in mind, there is ALWAYS MORE we can do):    

  •  build intrinsic strength in his foot in attempt to work on getting the first ray down to the ground; EHB, the lift/spread/reach exercises to perform.
  • address the leg length discrepancy with a 3 mm sole lift
  • address pathomechanics with mobilization and manipulation. 
  • improve proprioception: one leg balancing work
  • needled the peroneus longus brevis as well as medial gastroc and soles. 
  • follow up in 1 week to 10 days.

Pretty straight forward, eh? Look for this pattern in your clients and patients

Pain on the outside of the leg? Could it be your orthotic? What you wear on your feet amplifies the effect of the orthotic.

This woman presented with right-sided pain on the outside of her leg after hiking approximately an hour. She noticed a prominence of the arch in her right orthotic. She hikes in a rigid Asolo boot ( see below). Remember that footwear amplifies the effect of an orthotic!

In the pictures below you can see the prominent arch. The orthotic has her “over corrected” so that she toes off in varus on that side. The rigid footwear makes the problem worse. The peroneus group is working hard (Especially the peroneus longus)  to try and get the first Ray down to the ground.

The “fix” was to soften the arch of the orthotic and grind some material out. Look at the pictures where the pen is pointing to see how some of the midsole material was taken out. Notice how I ground it somewhat medial to further soften the arch.

She felt better much better after this change and is now a “happy hiker” 🙂

Got Arm Swing?

We have written many times about arm swing. Click here for some of our posts here on Tumblr.

Here we are again at the beach. Look at the beautiful difference in arm swing from side to side in the guy carrying the bag. Makes you want to tell him to use a backpack, eh?

Never mind what it does to his gait

  • decreased arm swing on the carrying side
  • increased step length on the left side
  • increased thigh flexion of the left side
  • increased body lean and head tilt to right side (Take a look at this paper)

think about the increased metabolic cost. Think about what this  type of input (increased amplitude of movement unilaterally) is doing to your cortex!

keep your movements symmetrical, folks!

The Gait Guys

Hip Abduction moment?

This was a great question we received, so we thought we would make a post of it, so everyone could benefit.

“@GregLehman: @KineticRev @TheGaitGuys do you guys have a link to your thoughts on how an ER leg allows the quads to create a hip abductor moment? Thanks”

First of all, What IS a hip abduction moment?

In posts, we often refer to a “moment”, meaning almost literally, a few seconds where a certain motion occurs. When are watching someone from behind and see their heel adduct as they get to terminal stance and pre swing (just before they toe off), you are seeing an “adductory moment” of the heel, sometimes referred to as an “adductory twist”.

Now lets think about the hip. Have you ever seen a framing square used by a carpenter? It is an “L” shaped device to make sure things are square (like hanging a door). The hip is kind of like this. It is shaped like an “L” with the neck and head forming the shorter side of the “L” and the femoral shaft forming the longer side. If you imagine the short side of the square attached to the pelvis and now hinging that away from the body, you have abduction of the hip. Normally, this task is tended to (primarily) by the middle fibers of the gluteus medius and posterior fibers of the gluteus minimus, assisted by the quadratus lumborum on the opposite side.

How can the quad be involved?

We remember that the quadriceps has four parts, the vastus lateralis, vastus intermedius and vastis medialis (collectively called “the vasti’) and the rectus femoris.

The rectus femoris proximal attachments are at the anterior inferior iliac spine (this is called the straight or anterior head) and the superior lip of the acetabulum (called the reflected or posterior head) Please see the top of the 2nd picture above, you can see the 2 heads. The distal attachment, after blending with the vasti, is into the patellar tendon and ultimately the tibial tuberosity.

The rectus is an accessory hip flexor and knee extensor, though it not normally a prime mover for either of these motions. It’s amount of action depends on the position of both the knee and hip.  When the knee is flexed, the rectus has less mechanical advantage, because it is placed in a lengthened position; same goes if the hip is extended.  It will be shortened if the hip is flexed and if the knee is extended at the same time, will have a mechanical disadvantage.

Now think about the direction of travel of each of the heads.

The “straight” head actually runs more obliquely from lateral to medial from its proximal attachment (AIIS) to the distal attachment (blending with vasti and patellar tendon); the refelected head runs a similar course, but not as oblique. If you were to externally rotate the thigh (remember, some folks may have an externally rotated foot due to external tibial torsion), it would actually give these heads more mechanical advantage (when the knee is relatively extended, such as at heel strike/ initial contact and toe off/ preswing) as abductors (remember to think from the ground up, closed chain, so the distal attachments are acting more like the origin); thus, the abductor moment we have talked about.

 

There you have it @Greglehman. Thanks for the great question.

 

The Gait Guys. Uber Gait Aficionado’s Extraordinaire. Come and learn with us. Watch us on Youtube; follow us on Facebook and Twitter, see many of our downloads on our payloadz site by clicking here.

 

All material copyright 2013 the Gait guys/ The Homunculus Group. All rights reserved; don’t make us call Lee.

What foot type do we have here?


OK, so this gentlemen comes in with knee pain, L > R and an interesting “jog” in his gait from midstance to toe off (ie, the 2nd half of his gait cycle). 

A few questions for you:

Q: What foot type does he have?

A: Forefoot valgus, L > R. The forefoot is everted with respect to the rear foot. Need to brush up? click here and here for a refresher

Q: What is the next question you should be asking?

A: Is it a rigid deformity (ie the 1st ray is “stuck” in plantar flexion or flexible (ie, the 1st ray can move into dorsiflexion. Hint: look for a callus under the base of the big toe in a rigid deformity

Q: Which is the best type of shoe for this person? Motion control, guidance or neutral?

A: most likely, neutral. A motion control shoe will usually keep the foot in more relative inversion, and that may be a bad thing for this person. Mobility is key, so a flexible shoe would probably be best.

Q: Would a conventional or zero drop shoe be appropriate?

A: A conventional shoe, with a higher ramp delta, will most likely accentuate the deformity (especially if it is a rigid deformity). This is for at least 2 reasons: 1. plantar flexion is part of supination (due to the higher heel; remember plantar flexion, inversion and adduction) and this will make the foot more rigid. 2. The medial side of the foot will be hitting the ground 1st; if the 1st ray is in plantar flexion, this will be accentuated. 


The Gait Guys. Foot Nerds to the max. Convincing you to join forces with us in spreading the word and gait literacy. LIke this post? tell others! Don’t like this post? Tell us!

Need to know more? Take our National Shoe Fit Program and get certified! email us at thegaitguys@gmail.com for details.