Can you guess why this person has left-sided plantar fasciitis?

This question probably seem somewhat rhetorical. Take a good look at these pedographs which provide us some excellent clues.

First of all,  note how much pressure there is over the metatarsal heads. This is usually a clue that people are lacking ankle rocker and pressuring these heads as the leg cantilevers forward.  This person definitely have a difficult time getting the first metatarsal head down to the ground.

Notice the overall size of the left foot compared to the right (right one is splayed or longer). This is due to keeping the foot and somewhat of a supinated posture to prevent excessive tension on the plantar fascia.

The increase splay of the right foot indicates more mid foot pronation and if you look carefully there is slightly more printing at the medial longitudinal arch. This is contributing to the clawing of the second third and fourth toes on the right. Stand up, overpronate your right foot and notice how your center of gravity (and me) move medially.The toes will often clench in an attempt to create stability.

The patient’s pain is mostly at the medial and lateral calcaneal facets, and within the substance of the quadratus plantae with weakness of that muscle and the extensor digitorum longus. She has 5° ankle dorsiflexion left and 10 degrees on the right and hip extension which is similar.

The lack of ankle rocker and hip extension or causing her to pronate through her midfoot, Tensioning are plantar fascia at the insertion. The problem is worse on the left and therefore that is where the symptoms are.

Pedographs can be useful tool in the diagnostic process and provide clues as to biomechanical faults in the gait cycle.

Congenital clubfoot anyone?

This gentleman, a longtime patient came in for new orthotics, as his old ones were 10 years old. From the pedographs above, you can see it is his LEFT foot. 

Note the following:

  • shortened apparent foot length left compared to right (the foot is merely deformed and plantarflexed)
  • The increased plantar pressures laterally, from the foot being supinated 
  • increased arch height L > R
  • clawing of digits 2-4 to provide stability

This case made me think about some common issues that you may be wondering about if you see these folks. 

There are several things you should think about:

  • People with clubfoot generally have a high arched, rigid, cavus foot. 
  • These folks generally are fixed in some degree of plantar flexion.
  • Because of the plantar flexed posture of their foot, they generally have a loss of a ankle rocker
  • If you utilize an orthotic with these patients, you need to make sure that there is significant ramp delta (heel higher than the 1st metatarsal)
  • Clubfoot can often be unilateral.
  • Clubfoot is usually not congenital
  • Gait training and balance (proprioceptive) work can be especially helpful in these cases. 

Abductory twist in your gait ?

Last night on our www.onlinece.com teleseminar we discussed some clinical applications and critical thinking of gait parameters and pathology. We discussed the dynamic gait pedograph below. Possible evidence of Abductory Twist gait pathology (video linkhttps://youtu.be/F3DHRoHrYOs). In this case, client had loss of internal hip rotation, but they sure love external rotation pivot at the ground interface, as the pedo shows here (more details were provided on the teleseminar last night).
*Fix the problem, retrain normal gait skills, add endurance and strength to the new gait pattern and you have a solution. Add an orthotic to treat what you see on the pedograph and you have a bandaid (and potentially/probably a problem down the road). You can’t fix a motor pattern compensation by forcing a compensatory fix. Get to the root of the problem, in this case hip and pelvic biomechanics ! It is all about mobility and stability ! 

Sometimes it is easy and straight forward.

HISTORY: A 56 YO 200 # male construction worker presents with pain at the bottom of his right foot, worse in the am, getting better as the day goes on till midday, then getting worse again. Better with rest and ice. More supportive shoes and a heel gel pad offer him some relief. Past history of plantar fascitis. 

OBJECTIVE:           Tenderness at medial calcaneal facet right side;  tenderness also in the arch and over the flexor hallucis longus tendon and short flexors of the toes. Ankle dorsiflexion is less than 5 degrees on the right, and 15 on the left.  Hip extension was less than 10 degrees bilaterally. He has mild bi-lat. external tibial torsion.

Gait evaluation reveled an increased progression angle right greater than left.  Very limited ankle dorsiflexion noted bi-lat (decreased ankle rocker). 

There is weakness of the short flexors (FDB) and long extensors (EDL) of the toes on the right. Poor endurance of the intrinsic musculature of the arch as well as interossei musculature during standing arch test.

PEDOGRAPH FINDINGS: 

ASSESSMENT:       From history and exam, plantar fascitis.

PLAN:           He was given the following exercises:  lift/spread/reach, the one leg balancing, shuffle walks and toes up walking. These were filmed via ipad and sent to him.  We are going to build him a medium heel cup, full length orthotic made out of acrylic.  We will see him again later this week.  We will do some symptomatic treatment utilizing manual stimulation techniques, pulsed ultrasound and additional exercises aimed at improving dorsiflexion as well as hip extension. 

 

Test your Mental Clinical Thinking Skills with this pedograph case. 

A few months ago, we discussed this case in great detail. There is likely little chance you will see our thinking progression with these final conclusions without sitting down with a warm cup of coffee and going over these 2 prior blog posts on this case (part 1 and part 2).  Besides, it will be a good review for you and it is great mental gymnastics.  This kind of analysis gets easier each time you do it but we have to through out our standard warning. This is the kind of stuff one needs to be able to go through on the fly in one’s practice, it is something to aspire to.

First of all, caveats:

  • Our discussions on this case were all theoretical.  What we went through was an exercise in static assessment and clinical thinking
  • One cannot, and must not, make clinical decisions from a static assessment. 
  • As in all assessments, information is taken in, digested and then MUST be confirmed, denied and/or at the very least, folded into a functional and clinically relevant assessment of the client before the findings are accepted, dismissed and acted upon. 
  • Gait analysis or pedograph-type assessment are helpful tools, but not the final answer.

Our static exam proposal on this case came up with the following theories (please stand up and mimic as we discuss, trust us, it will help you). *Remember: the foot on YOUR LEFT is the RIGHT foot for the purposes of this discussion. And remember, this is all theoretical, this is an exercise in biomechanical and clinical thinking, nothing more.

  • Suspect Counter-clockwise pelvis distortion pattern (causes relative internal rotation on LEFT and external rotation on RIGHT), this will drive Left knee hyperextension and Right knee flexion (hence foot plantar pressures as we discussed in previous 2 blog posts linked above). This of course cannot be seen, but we are extrapolating from our clinical experiences.
  • poor pronation and internal limb spin control on the left (hence longer foot and toe hammering). Obviously, we would see a dramatic shift of the pressures to the medial foot if this were truly the case.  Perhaps this is because of the greater lateral left pelvis drift forcing the glute and foot pronatory controls to have to work harder and longer, and maybe even quicker, to control the internal spin and pronation. Over time, they fatigue and fail rendering a flatter, more pronated and longer heel:toe ball length ratio. This would also give credence to the left toe hammering/gripping response.
  • static increased left limb weight bearing (left hip drift)
  • abrupt right foot loading pattern (more mid-forefoot strike), perhaps as reflected by the static forefoot loading. Again, supposition.
  • with all of the above, it is suspect that this client will appear to have a subtle limp, coming off the left quickly or prematurely as they speed through uncontrolled pronation and resulting in an abrupt right limb loading response that mostly skips through heel strike and results in a more aggressive mid-forefoot loading response.  This, sort of, creates a catching of the loading response by the quadriceps more than the gluteals. This can cause medial knee drift (valgus loading) if the medial knee stabilizers are not up to task, this also creates a sudden patellofemoral compresson event and unappreciated sudden tension on the extensor mechanism (the quad-patella-patellar tendon complex).  Can you say generic anterior knee pain ?

Just some thoughts. Please go back to the prior 2 blog posts to delve deeper into the conclusions we have brought about here, we have other good reasoning to suspect the above as the scenario. But remember, what you see is not the problem, we see people’s compensations, their strategies. This was just an exercise in “what ifs”, nothing more. But you will see it in your clinic, just substantiate it with an exam, not what you necessarily see in your clients gait or static assessment. Static assessments are for fools, don’t be a fooled fool.  What  you see is not the problem.

Remember this critical fact.  After an injury or a long standing problem, the job of muscles and motor patterns is to stabilize and manage loads (stability and mobility) for adequate and necessary movement. Injuries often leave a mark on the system as a whole because adaptation was necessary during the initial healing phase. This usually spills over during the early movement re-introduction phase, particularly if movement is reintroduced too early or too aggressively.  Plasticity is often a culprit. Just because the injury has come and gone does not mean that new patterns of skill, endurance, strength (S.E.S -our favorite mnemonic), stability and mobility were not subsequently built onto the apparently trivial remnants of the injury. There is nothing trivial if it is abnormal. The forces must, and will, play out somewhere in the body and this is often where pain or injury occurs but it is rarely where the underlying problem lives. Is the compensation top down, bottom up, or both ?

Don;t be a fooled fool. Get the facts.

Shawn and Ivo, the gait guys

Part 2: “Standing on Glass” Static Foot/Pedograph Assessment

* note (see warning at bottom): This is a static assessment dialogue. One cannot, and must not, make clinical decisions from a static assessment. The right and left sides are indicated by the R and L circled in pink. There are 4 photos here today.

Blue lines: Last time we evaluated possible ideas on the ORANGE lines here, it would be to your advantage to start there. 

We can see a few noteworthy things here in these photos. We have contrast-adjusted the photo so the pressure areas (BLUE) are more clearly noted. There appears to be more forefoot pressure on the right foot (the right foot is on the readers left), and more rearfoot pressure on the left (not only compare the whiteness factor but look at the displacement of the calcaneal fat pad (pink brackets). There is also noticeably more lateral forefoot pressure on the left. There is also more 3-5 hammering/flexion dominance pressure on the left.  The metatarsal fat pad positioning (LIME DOTS represent the distal boundary) is intimately tied in with the proper lumbrical muscle function  (link) and migrates forward toward the toes when the flexors/extensors and lumbricals are imbalanced. We can see this fat pad shift here (LIME DOTS). The 3-5 toes are clearly hammering via flexor dominance (LIME ARROWS), this is easily noted by visual absence of the toe shafts, we only see the toe pads. Now if you remember your anatomy, the long flexors of the toes (FDL) come across the foot at an angle (see photo). It is a major function of the lateral head of the Quadratus plantae (LQP) to reorient the pull of those lesser toe flexors to pull more towards the heel rather than on an angle. One can see that in the pressure photos that this muscle may be suspicious of weakness because the toes are crammed together and moving towards the big toe because of the change in FDL pull vector (YELLOW LINES). They are especially crowding out the 2nd toe as one can see, but this can also be from weakness in the big toe, a topic for another time. One can easily see that these component weaknesses have allowed the metatarsal fat pad to migrate forward. All of this, plus the lateral shift weight bearing has widened the forefoot on the left, go ahead, measure it. So, is this person merely weight bearing laterally because they are supinating ? Well, if you read yesterday’s blog post we postulated thoughts on this foot possibly being the pronated one because of its increased heel-toe and heel-ball length. So which is it ? A pronated yet lateral weight bearing foot  or a normal foot with more lateral weight bearing because of the local foot weaknesses we just discussed ? Or is it something else ? Is the problem higher up, meaning, are they left lateral weight bearing shift because of a left drifted pelvis from weak glute medius/abdominal obliques ?  Only a competent clinical examination will enlighten us.

Is the compensation top-down or bottom up, or both in a feedback cycle trying to find sufficient stability and mobility ? These are all viable possibilities and you must have these things flowing freely through your head during the clinical examination as you rule in/rule out your hands-on findings.  Remember, just going by a screen to drive prescription exercises from what you see on the movement screen is not going to necessarily fix the problem, it could in fact lead one to drive a deeper compensation pattern. 

Remember this critical fact.  After an injury or a long standing problem, muscles and motor patterns jobs are to stabilize and manage loads (stability and mobility) for adequate and necessary movement. Injuries leave a mark on the system as a whole because adaptation was necessary during the initial healing phase. This usually spills over during the early movement re-introduction phase, particularly if movement is reintroduced too early or too aggressively.  Plasticity is the culprit. Just because the injury has come and gone does not mean that new patterns of skill, endurance, strength (S.E.S -our favorite mnemonic), stability and mobility were not subsequently built onto the apparently trivial remnants of the injury.  There is nothing trivial if it is abnormal. The forces must, and will, play out somewhere in the body and this is often where pain or injury occurs but it is rarely where the underlying problem lives.

Come back tomorrow.  We will try to bring this whole thing together, but remember, it will just be a theory for without an exam one cannot prove which issues are true culprits and which are compensations. Remember, what you see is often the compensatory illusion, it is the person moving with the parts that are working and compensating not the parts that are on vacation.  See you tomorrow friends !

Shawn and ivo, the gait guys

* note: This is a static assessment dialogue. One cannot, and must not, make clinical decisions from a static assessment. As in all assessments, information is taken in, digested and then MUST be confirmed, denied and/or at the very least, folded into a functional and clinically relevant assessment of the client before the findings are accepted, dismissed and acted upon. As we always say, a gait analysis or static pedograph-type assessment (standing force plate) is never enough to make decisions on treatment to resolve problems and injuries. What is seen and represented on either are the client’s strategies around clinical problems or compensations.  Today’s photo and blog post are an exercise in critical clinical thinking to get the juices flowing and to get the observer thinking about the client’s presentation and to help open up the field to questions the observer should be entertaining.  The big questions should be, “why do i see this, what could be causing these observances ?”right foot supinated ? or more rear and lateral foot……avoiding pronation ?

Part 2: “Standing on Glass” Static Foot/Pedograph Assessment

* note (see warning at bottom): This is a static assessment dialogue. One cannot, and must not, make clinical decisions from a static assessment. The right and left sides are indicated by the R and L circled in pink. There are 4 photos here today.

Blue lines: Last time we evaluated possible ideas on the ORANGE lines here, it would be to your advantage to start there. 

We can see a few noteworthy things here in these photos. We have contrast-adjusted the photo so the pressure areas (BLUE) are more clearly noted. There appears to be more forefoot pressure on the right foot (the right foot is on the readers left), and more rearfoot pressure on the left (not only compare the whiteness factor but look at the displacement of the calcaneal fat pad (pink brackets). There is also noticeably more lateral forefoot pressure on the left. There is also more 3-5 hammering/flexion dominance pressure on the left.  The metatarsal fat pad positioning (LIME DOTS represent the distal boundary) is intimately tied in with the proper lumbrical muscle function  (link) and migrates forward toward the toes when the flexors/extensors and lumbricals are imbalanced. We can see this fat pad shift here (LIME DOTS). The 3-5 toes are clearly hammering via flexor dominance (LIME ARROWS), this is easily noted by visual absence of the toe shafts, we only see the toe pads. Now if you remember your anatomy, the long flexors of the toes (FDL) come across the foot at an angle (see photo). It is a major function of the lateral head of the Quadratus plantae (LQP) to reorient the pull of those lesser toe flexors to pull more towards the heel rather than on an angle. One can see that in the pressure photos that this muscle may be suspicious of weakness because the toes are crammed together and moving towards the big toe because of the change in FDL pull vector (YELLOW LINES). They are especially crowding out the 2nd toe as one can see, but this can also be from weakness in the big toe, a topic for another time. One can easily see that these component weaknesses have allowed the metatarsal fat pad to migrate forward. All of this, plus the lateral shift weight bearing has widened the forefoot on the left, go ahead, measure it. So, is this person merely weight bearing laterally because they are supinating ? Well, if you read yesterday’s blog post we postulated thoughts on this foot possibly being the pronated one because of its increased heel-toe and heel-ball length. So which is it ? A pronated yet lateral weight bearing foot  or a normal foot with more lateral weight bearing because of the local foot weaknesses we just discussed ? Or is it something else ? Is the problem higher up, meaning, are they left lateral weight bearing shift because of a left drifted pelvis from weak glute medius/abdominal obliques ?  Only a competent clinical examination will enlighten us.

Is the compensation top-down or bottom up, or both in a feedback cycle trying to find sufficient stability and mobility ? These are all viable possibilities and you must have these things flowing freely through your head during the clinical examination as you rule in/rule out your hands-on findings.  Remember, just going by a screen to drive prescription exercises from what you see on the movement screen is not going to necessarily fix the problem, it could in fact lead one to drive a deeper compensation pattern. 

Remember this critical fact.  After an injury or a long standing problem, muscles and motor patterns jobs are to stabilize and manage loads (stability and mobility) for adequate and necessary movement. Injuries leave a mark on the system as a whole because adaptation was necessary during the initial healing phase. This usually spills over during the early movement re-introduction phase, particularly if movement is reintroduced too early or too aggressively.  Plasticity is the culprit. Just because the injury has come and gone does not mean that new patterns of skill, endurance, strength (S.E.S -our favorite mnemonic), stability and mobility were not subsequently built onto the apparently trivial remnants of the injury.  There is nothing trivial if it is abnormal. The forces must, and will, play out somewhere in the body and this is often where pain or injury occurs but it is rarely where the underlying problem lives.

Come back tomorrow.  We will try to bring this whole thing together, but remember, it will just be a theory for without an exam one cannot prove which issues are true culprits and which are compensations. Remember, what you see is often the compensatory illusion, it is the person moving with the parts that are working and compensating not the parts that are on vacation.  See you tomorrow friends !

Shawn and ivo, the gait guys

* note: This is a static assessment dialogue. One cannot, and must not, make clinical decisions from a static assessment. As in all assessments, information is taken in, digested and then MUST be confirmed, denied and/or at the very least, folded into a functional and clinically relevant assessment of the client before the findings are accepted, dismissed and acted upon. As we always say, a gait analysis or static pedograph-type assessment (standing force plate) is never enough to make decisions on treatment to resolve problems and injuries. What is seen and represented on either are the client’s strategies around clinical problems or compensations.  Today’s photo and blog post are an exercise in critical clinical thinking to get the juices flowing and to get the observer thinking about the client’s presentation and to help open up the field to questions the observer should be entertaining.  The big questions should be, “why do i see this, what could be causing these observances ?”right foot supinated ? or more rear and lateral foot……avoiding pronation ?