Arm swing asymmetry: It can be a huge window of education into your client.

Arm swing asymmetry: It can be a huge window of education into your client, if you can get past the dumb stuff we’ve all done (and believed) for decades.
I have beaten you down with arm swing principles over the past few years, sorry about that, but, the beating will continue because it is important to know what arm swing tells you, and what it does not tell you (hint hint for all those improperly coaching arm swing changes). We did an entire tele seminar on the Stage 1 principles of of arm swing (#218) on and if you wish to take that archived lecture. Heck $19, how can you lose (see photo).  Arm swing is intimately dependent upon scapular stability, thoracic mobility, breathing, cervical spine function, pelvis stability and clearly ipsilateral and contralateral leg swing not to forget to mention spinal stability. The first signs of spine pain or instability and the counter rotation of the shoulder and pelvic girdles become more phasic, instead of their normal anti phasic nature (moving in opposite directions). This phasic nature reduces spinal shear loads.

Neurologic diseases in their early, middle and late phases can give us a clearer window into how the nervous system is tied together.
Arm swing asymmetry during gait may be a sensitive sign for early Parkinson’s disease.

Here is what this Plate et al study found :
-Arm swing amplitude as well as arm swing asymmetry varied considerably in the healthy subjects.
-Elderly subjects swung their arms more than younger participants. -Only the more demanding mental load caused a significant asymmetry
-In the patient group, asymmetry was considerably higher and even more enhanced by mental loads.
-Evaluation of arm swing asymmetry may be used as part of a test battery for early Parkinson’s disease.

Some facts you should consider:
Parkinson’s Disease will be well advanced before the first signs of motor compromise occurs. So early detection and suspicion should be acted upon early when possible. Reductions or changes in arm swing may be the first signs of neuralgic disease expression and progression. Dual tasking may bring out neurologic signs early, so talk to your clients or have them count backwards to distract the motor programs. Look for one sided arm swing impairment, and when present, be sure to examine all limbs, especially the lower limbs, for impaired function. After all, the arms are like balasts, they can help with postural stability simply by abducting or modifying their swing.  Arm swing changes can include:
– crossing over the body
– more forward sagittal swing and less posterior swing
– more posterior sagittal swing and less anterior swing
– shoulder abduction during swing (and with attributes of the prior two mentioned above)
– less swing with adduction stabilized with torso
– modified through accentuations or dampening of shoulder girdle rotation oscillations, thus less arm swing but more torso swing to protect the glenohumeral and other joints
– and others of course

Arm swing and arm swing symmetry matter. Don’t be a dunce and just train it out or tell your client to do things to change it before you identify the “why” behind it. If it were that simple Ivo and I would have long grown tails and begun eating more bananas. Or maybe we would have already moved to the islands by now. That was random wasn’t it. That’s what Jimmy Buffett said.

“Now he lives in the islands, fishes the pilin’s
And drinks his green label each day
He’s writing his memoirs and losing his hearing
But he don’t care what most people say.
Through eighty-six years of perpetual motion
If he likes you he’ll smile then he’ll say
Jimmy, some of it’s magic, some of it’s tragic
But I had a good life all the way.
And he went to Paris looking for answers
To questions that bother him so.”  -Jimmy Buffett

Hope this helps, now back to that rum.
-Shawn Allen

Gait Posture. 2015 Jan;41(1):13-8. doi: 10.1016/j.gaitpost.2014.07.011. Epub 2014 Aug 8.
Normative data for arm swing asymmetry: how (a)symmetrical are we?  Plate A1, Sedunko D2, Pelykh O3, Schlick C4, Ilmberger JR5, Bötzel K6.

Starting and stopping your gait. How we do it gracefully.

Can you imagine being unable to stop moving graciously? Imagine that every attempt to halt your walking or running was like smacking into a wall or stumbling to a halt ? Kind of like that amateur driver who uses no grace or finesse, every start is a stomp on the gas and every stop is a slamming on the brakes.  Or can you imaging suffering from FOG (freezing of gait) as in some Parkinson’s patients ?  
When we are healthy, we take locomotion for granted. When we are in pain, movement can become labored and challenging; when we have a neurologic disease to the locomotor centers, we can find it almost impossible.  On occasion, it can be the seemingly simplest of things that can cause the greatest of difficulties, for example, we take stopping for granted and we underestimate the complexity of initiating movement. It is one of those things in life, you do not know what you have until you lose it.  When was the last time you even thought about starting or stopping your movements ? It is so natural that the thought doesn’t even reach the surface of our conscious thought.  When was the last time you walked towards your kitchen sink to wash the dishes and you consciously thought, 

“ok, we are about 3 more steps from the sink, you had better slow down … . ok, 2 more steps … 1 more step, this is the last one … .  ok, that is it, you have arrived at the sink, both feet stop moving … . . initiate double stance support, 50% weight on both feet… . .  begin standing mode.”

There is a brainstem pathway specifically dedicated to control locomotor arrest. Activating this pathway stops locomotion, while inhibiting the pathway enables locomotion.

In the study below, researchers Julien Bouvier and Vittorio Caggiano together with Professor Ole Kiehn and colleagues studied how the complex brainstem neuronal circuits control locomotion in mice.  What they found was this, 

Neuronal populations in the Reticular Formation of the brain “constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of these neurons (V2a) of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a “stop neurons” represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.”-Bouvier et al.

Human locomotion is an extremely complex task. It is one that requires all sensory and motor pathways to be intact and reflexive controls such as central pattern generators to function properly.  Gait is a complex task that requires synchrony, rhythmicity, balance, coordination, endurance and strength to name a few.  Initiating gait is highly complex, as is arresting one’s gait.  We take for granted how complex these task are at coordinating muscles, joints, limbs, vision, proprioception, vestibular inputs and many other components not to forget the cerebral connection bring it all together to get us from one place to the next is a safe fashion. It is only when things go wrong that we realize how fragile, and how complex, the system truly is.  Don’t believe us ?  Well then, try to over ride the system next time you are coming to a curb at the corner of the busiest street in your town.  Try to over ride the coordinated stop mechanism that enables you to suddenly stop perched on the curb, observing oncoming traffic, standing safely without falling into the lane.

Shawn Allen, one of The Gait Guys

“Descending command neurons in the brainstem that halt locomotion” by Julien Bouvier, Vittorio Caggiano, Roberto Leiras, Vanessa Caldeira, Carmelo Bellardita, Kira Balueva, Andrea Fuchs, and Ole Kiehn in Cell. Published online November 19 2015 doi:10.1016/j.cell.2015.10.074

This brief blog post was inspired from this article on the same topic.

Irregular Arm Swing Could Be Early Sign Of Pending neurological disease.

Written by Dr. Shawn Allen

We’ve been saying this for quite some time now, the small subtle gait changes are often the first sign of things to come.

The attached article suggests that scientific measurement investigating irregular arm swing during gait could help diagnose the Parkinson’s disease earlier, giving greater opportunity to slow brain cell damage and disease progression.

In the study below Huang suggests that although we all know that classically the Parkinsonian disease is met with tremors, slow movements, stooped posture, rigid muscles, bradykinesia, speech changes etc, “by the time we diagnose the disease, about 50 to 80 percent of the critical cells called dopamine neurons are already dead,”

Previously, here at The Gait Guys, we have gone deep into discussions of arm swing and the phasic and anti-phasic natures of limb action in gait and how the four limbs interact neurologically, both centrally and peripherally. You can click here for just a sampling of our “arm swing” writings,   

In the study, because arm swing changes are one of the first gait parameters to diminish and decline, and because the decline is typically asymmetrical due to the fact that the disease is an asymmetrical one, the authors compared arm swing magnitude and asymmetry in patients with and without Parkinson’s as parameters to begin the assessments.  Most research to date has commented on the early loss of arm pendular swing but as they said here, “ but nobody had looked using a scientifically measured approach to see if the loss was asymmetrical or when this asymmetry first showed up,“ explained Huang.

What they discovered was that compared to the control group, “the Parkinson’s group showed significantly greater asymmetry in their arm swing (one arm swung significantly less than the other while walking),” and when the subjects walked faster, the arm swing increased but the amount of asymmetry remained unchanged.

On a slightly different tangent of thinking, an aside from the Parkinson’s disease disucussion, how truly sensitive is this limb swing thing you might ask ? Here, read this from this piece (How injury and pain reorganize the brain) we wrote a few years ago.

“Getting a cast or splint causes the brain to rapidly shift its resources to make righties function better as lefties, researchers found.
Right-handed individuals whose dominant arm had to be immobilized after an injury showed a drop in (brain) cortical thickness in the area that controls primary motor and sensory areas for the hand, Nicolas Langer, MSc, of the University of Zurich in Switzerland, and colleagues reported.
Over the same two-week period, white and gray matter increased in the areas that controlled the uninjured left hand, suggesting “skill transfer from the right to the left hand,” the group reported in the Jan. 17 issue of Neurology.
The findings highlight the plasticity of the brain in rapidly adapting to changing demands, but also hold implications for clinical practice, they noted.”

This article highlights the rapid changes in motor programs that occur. It does not take long for the body to begin to develop not only functional adaptations but neurologic changes at the brain level within days and certainly less than 2 weeks.

If you know your literature on this topic of arm swing symmetry, you know it is an arguable point.  According to the Lathrop-Lambach study (see link in the article just mentioned above), they mentioned that they feel a 10% baseline asymmetry is the norm.  This symmetry issue is an arguable point that no one is likely to ever win.  We tend to feel, as many others do, that asymmetry can be a major component and predictor to injury, and in today’s topic of discussion a possible determinant of higher level gait disease. 

Still think you should retrain arm swing ? Dive into our blog archives here on arm swing, you will find out that perhaps it is not your best first choice. Discover from our old writings who tends to dictate how much arm swing occurs. 

Shawn Allen, one of the gait guys


“Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease.”
Michael D Lewek, Roxanne Poole, Julia Johnson, Omar Halawa, Xuemei Huang
Gait & Posture, 2009, In Press, Corrected Proof, Available online 27 November 2009  DOI:10.1016/j.gaitpost.2009.10.013

Deep brain stimulation and movement.

We talk much about movement patterns and movement problems here and on our blog. In recent years there has been much research on stimulating the subthalamic nucleus with deep brain stimulation (STN-DBS) to alter freezing of gait (FOG) in patients with advanced Parkinson’s disease. We will likely see more and more research, and likely therapeutic options in time, on deep brain stimulation (DBS). The future looks bright. If you want to get into the deeper stuff, search Pubmed for DBS.
From the article:
“There are more than 100 nervous system disorders that afflict millions of people across the globe. Many of the disorders affect a person’s movement and alter their motor controls. This includes balance, gait, speed of movement, tremors, jerks and abnormal postures. Deep brain stimulation or DBS has successfully treated these symptoms and allowed many sufferers to reclaim their lives.”
Read more here …

A Wobble in the System: The Gait Changes in Normopressure Hydrocephalus

Can you afford to miss this diagnosis ? 

Today, the gait changes in NPH are discussed because as with many neurologic disorders and diseases, subtle gait changes are the first signs. And, in this disorder, you have to catch the gait changes early on in order to give your client the greatest changes of full recovery.   Today we couple this blog post with a great video story of a missed case study of NPH.

Normopressure hydrocephalus (NPH) consists of the triad of :

1. gait disturbance
2. urinary incontinence
3. dementia or mental decline

In the most general terms, Normal pressure hydrocephalus (NPH), also referred to as symptomatic hydrocephalus, is caused by a decreased absorption of cerebrospinal fluid (CSF). The resultant increased intracranial pressure can cause ventriculomegaly.  In NPH patients, the pressure remains just slightly elevated, but enough to create pressure on the cortical tissues of the brain causing the symptoms above. The vagueness of this problem and its seemingly random symptoms is primarily why this disorder is often missed or misdiagnosed as dementia, Parkinson’s or Alzheimers disorders.

As discussed previously, many early neurological diseases and disorders softly present with early gait changes. And, as in NPH, gait changes may be the earliest symptom of the 3 mentioned earlier. One’s ability to know, observe and recognize abnormal gait patterns coupled with a good historical interview and physical exam can often tease out the earliest manifestation of NPH.

Here is what you need to know about the gait presentation in NPH:

The gait changes are often subtle and progress as NPH progresses because of the changes in the brains ventricular tissues eventually compromising the sensory-motor tracts.
Early gait changes, MILD, may show a cautious gait. Steps length and stride length may be slowed and shortened. The gait may begin to show signs of being deliberate and calculated, less fluid and free. The appearance of unsteadiness or balance challenges may prevail. Once simple environmental obstacles may now present as challenges, things like curbs, stairs, weaving between tables in restaurants or wide open spaces where there is nothing to grasp onto for stability. Weakness and tiredness of the legs may also be part of the complaint, although examination discloses no paresis or ataxia. (Ropper)  A walking aid such as a cane may add comfort but often appears to be rarely used.

As the gait changes progress into the more MODERATE to ADVANCED, the walking aids used often progress into quad walkers.  Wheelchairs are needed in more difficult places or when fatigue is growing factor.  As the gait challenges progress, the careful observer will note a more obvious reduction in step and stride length, a head down posture, less dual tasking engagement during gait execution, slowed walking speed, reduced foot-floor clearance, shuffling gait (keeping the feet more engaged to the ground, this can be a Parkinsonian-type gait mis-read, there will be no tremor or rigidity), searches for stable external cues (reaching for railings, a kind arm or hand, touching walls etc), widening of the feet (broad based stance), and fears of falling backward.

In the most ADVANCED gait impairments, the fear of falling can become too great. There may even be an inability to engage sit-stand-walk motor patterns and the fatigue of the limbs may be too advanced to even stand let along walk. This stage is referred to as Hydrocephalic astasia-abasia (Ropper).  

Normopressure Hydrocephalus is a serious issue if left unrecognized and untreated. Here is yet another reason why you must be familiar with this problem:

“Patients with dementia who are confined to a nursing home and may have undiagnosed NPH can possibly become independent again once treated. So far only one study was able to evaluate the prevalence of NPH, both diagnosed and undiagnosed, among residents of assisted-living facilities, showing a prevalence in 9 to 14% of the residents.” – Marmarou

One’s lack of awareness and knowledge, are one’s greatest enemies. If you don’t know something exists, because you’ve never studied or learned it, how can you be aware of it ? If you’re not spending enough time examining a client, you might be unaware of an issue even though you may be knowledgeable about the issue. One must have both awareness and knowledge. One must also be aware that compensations are the way of the body. What you see is not your client’s problem. It is their strategy to cope.

NPH must be diagnosed early on since a delay in reducing the pressure on the cortical tissues can lead to permanency of disease and dysfunction.  According to Poca there can be a wide range of successes and failures in symptom remediation, but there is clearly a time dependency on early diagnosis. Thus, clearly recognizing any early gait changes and behaviors prior to advancing incontinence and mental decline is paramount.

Bonus: here is a little bonus tidbit for my fellow neuro gait friends. 

Stolze (7) study conclusion: “The gait pattern in normal pressure hydrocephalus is clearly distinguishable from the gait of Parkinson’s disease. As well as the basal ganglia output connections, other pathways and structures most likely in the frontal lobes are responsible for the gait pattern and especially the disturbed dynamic equilibrium in normal pressure hydrocephalus. Hypokinesia and its responsiveness to external cues in both diseases are assumed to be an expression of a disturbed motor planning.”

Dr. Shawn Allen, … one of “the gait guys”

Some of the above was inspired and summarized by this great article, from the Boston Globe.  


1. Marmarou, Anthony; Young, Harold F.; Aygok, Gunes A. (1 April 2007). “Estimated incidence of normal-pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities”. Neurosurgical FOCUS 22 (4): 1–8.

2. Ropper, A.H. & Samuels, M.A. (2009). Adams and Victor’s Principles of Neurology (9th edition). New York, NY: McGraw-Hill Medical.

3. Poca, Maria A.; Mataró, Maria; Matarín, Maria Del Mar; Arikan, Fuat; Junqué, Carmen; Sahuquillo, Juan (1 May 2004). “Is the placement of shunts in patients with idiopathic normal pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure”. Journal of Neurosurgery 100 (5): 855–866.

4. Am J Phys Med Rehabil. 2008 Jan;87(1):39-45.
Objective assessment of gait in normal-pressure hydrocephalus.
Williams MA1, Thomas G, de Lateur B, Imteyaz H, Rose JG, Shore WS, Kharkar S, Rigamonti D.

5. Clin Neurophysiol. 2000 Sep;111(9):1678-86.
Gait analysis in idiopathic normal pressure hydrocephalus—which parameters respond to the CSF tap test?
Stolze H1, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, Mehdorn HM, Illert M, Deuschl G.

6.Rev Neurol (Paris). 2001 Nov;157(11 Pt 1):1416-9.
[Postural and locomotor evaluation of normal pressure hydrocephalus: a case report]. Mesure S1, Donnet A, Azulay JP, Pouget J, Grisoli F.

7.J Neurol Neurosurg Psychiatry. 2001 Mar;70(3):289-97.
Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease.
Stolze H1, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Illert M, Deuschl G.

Texting and Walking.  Your gait will change when you are texting on your phone.
You are going to want to put away your cell phone after you read this, or at least hide your parent’s phones.
*(the video link attached here has likely been blocked by ABC News, you should see a forwarded link to their youtube feed. If not, here it is

So you think you are a multi-tasker do you ?  Do you know how much cerebral cortex real estate is necessary to walk or drive and text ? Just try texting while walking for 5 seconds in an unfamiliar environment and see what happens.  Dual tasking is difficult especially when one task is cognitive and the other is spacial and motor. At some point something has to give, especially if you are on the edge of tapping out the executive function centers in the brain because of early disease or age related mental decline.  This has never been more prevalent than in the elderly and the number of mounting studies proving that dual attention tasks lead to a dramatic increase in age related fall injuries.  If you look into the literature the fall rate increases from anywhere from 11 to 50%, these are strong numbers correlating falls and dual attention tasking in the elderly.  Certainly the numbers are worse in the frail and gait challenged and fewer in healthier elderly folks, but the correlation seems to be strong particularly when there are even early signs of frontal cortex demise. We have talked about this on several recent podcasts (check out podcasts 80-85) and this has been rooted even further from one of our neurology mentors, Dr. Ted Carrick.  

Recently in the Journal of Applied Biomechanics, Parr and associated took 30 young able bodied healthy individuals with experience texting on cellular phones. The study used an 11-camera optical motion capture system on a 8m obstacle-free floor. 
The study showed a reduction in gait velocity in addition to significant changes in spatial and temporal parameters, notably, step width, while the double support phase of the gait cycle increased.  Furthermore, and equally disturbing, toe clearance decreased but luckily step length and cadence decreased. 
Thus, it appears that the attention draining texting task generally forced the brain to slow the gait, reduce step length while improving stability via increasing step width and double support phase of gait, keep in mind that these are young healthy experienced individuals with no early cognitive challenges.  This is not the case in aging adults, or in adults with factors that have either challenged gait stability (degrees of impaired balance, vision, vestibular, proprioception etc) or challenged frontal cortex function where that functionality of the brain is already nearing its tipping point for adequate function.  Sadly, these are all factors in the aging adult and they are why falls are increased and riskier for the elderly. Essentially, what the studies are showing is that dual tasking creates a distraction that can amplify any sensory-motor challenges in the system.  Mind you, there are studies that show that if the dual task is remedial such as talking while walking the effects are more muted, however in those who are at the tipping point capacity of mental executive function, mere talking (cognitive linguistic engagement), can also tip the system into deciding whether to focus on the gait or the talk but not both adequately.  Something will have to give in these folks, safe competent dual tasking is beyond the ability of their system. 
As we have eluded to here, there are many factors and variables that can challenge the system. Visual challenges such as low light vision problems or depth perception challenges can act similarly on the system to dual tasking attempts and thus magnify fall risk. What about sensory challenges from a spinal stenosis or peripheral neuropathy such as in advancing diabetes?  Balance and vestibular challenges, let alone factors such as unfamiliar environments (perhaps magnified by vision challenges) as precursors are a foregone conclusion to increase fall risk in anyone let alone the elderly.
By this point in this article it should be a given that texting while doing anything else is a dual tasking brain challenge that could lead to a fall, an embarrassing spill into the public pool or into a fountain at the mall let alone driving off a cliff or into a crowd of people.  But are all of these unfortunate people showing signs of frontal cortex/executive function impairment? Perhaps not, especially if they are healthy.  One has to keep in mind that texting is a high demanding cognitive attention task, even though we think nothing of it as a healthy adult. Think about it, one has to engage a separate screen other than the environment they are trying to walk through. Additionally, one has to think about what they are trying to text, engage a seperate motor program to type, then there is spelling, choosing text recipients, sending the message, watching and listening for a response, and the list goes on meanwhile the person is still trying to run the gait subprograms.  We take it for granted but texting is highly engaging and adding walking can tip the system into a challenge or failure if we are in a crowd, unfamiliar environment, low light etc.  
So if you have ever wondered why elderly people trip and fall in even the most benign environments, it is likely a compounded result of challenges to situation and spatial awareness and working memory with many possible factor challenges. Again, things like poor lighting, vision limitations, unfamiliar environment, vestibular limitations, numbness in the feet, talking or even if they are simply carrying the afternoon tea to the sun room these things all are dual tasking and some require higher demands from the executive function brain centers.   Any factor(s) which tax the already-reducing executive function centers in the elderly subtract from the most basic elements required for upright posture and gait.  If dual-tasking can impair healthy young individuals, the elderly are a forgone conclusion to have magnified risks.  
There can be a plus to all of this however. If the goal were to only reduce falls and fall risks in the elderly, an astute clinician can work this to their favor and do gait challenges and retraining in the office environment while safely stacking dual task challenges to expand and restore some executive function capabilities.  We are never too old to learn and lay down improved motor and cognitive patterns. So, use this information to your advantage to improve function instead of delivering it as a dark cloud to hang over your clients, whether they are elderly or neurologically challenged. 
In summary, put down the darn phone, trust us, that text can wait.  Rather, enjoy the sunshine, the smiling faces, the trees.  If you are driving or walking, dump the phone and pay attention to traffic and your environment. Stop and wave to a friend. Teach your kids about this texting problem, they are likely already oblivious to many risks in the world, and this one likely hasn’t crossed their mind either. At the very least, help the elderly lady or man cross the street. By now you should understand all that they are consciously and subconsciously trying to calculate to negotiate the street crossing. Their declining executive function is often a mental feat all on its own, but having to actually add the physical act of walking (which is likely already showing aspects of age related biomechanical decline) might just be their tipping point leading to a fall.  So offer your arm, a warm smile, and think everything of it, because someday it will be you at that street corner with sweaty palms and great fear.
Shawn and Ivo, “the gait guys”
References :
1. Eur J Neurol. 2009 Jul;16(7):786-95. doi: 10.1111/j.1468-1331.2009.02612.x. Epub 2009 Mar 31.
Stops walking when talking: a predictor of falls in older adults?Beauchet O1Annweiler CDubost VAllali GKressig RWBridenbaugh SBerrut GAssal FHerrmann FR.
2. J Appl Biomech. 2014 Dec;30(6):685-8. doi: 10.1123/jab.2014-0017. Epub 2014 Jul 9. Cellular Phone Texting Impairs Gait in Able-bodied Young Adults. Parr ND1, Hass CJTillman MD.
3. Gait Posture. 2014 Aug 20. pii: S0966-6362(14)00671-7. doi: 10.1016/j.gaitpost.2014.08.007. [Epub ahead of print]  Texting and walking: effects of environmental setting and task prioritization on dual task interference in healthy young adults. Plumer, Apple, Dowd, Keith.
4. Gait Posture. 2012 Apr;35(4):688-90. doi: 10.1016/j.gaitpost.2011.12.005. Epub 2012 Jan 5.  Cell Phones change the way we walk.  Lamberg, Muratori
5. Int J Speech Lang Pathol. 2010 Oct;12(5):455-9. doi: 10.3109/17549507.2010.486446.  Talking while walking: Cognitive loading and injurious falls in Parkinson;s disease. LaPointe LL1, Stierwalt JAMaitland CG.


Podcast 47: The Thigh Gap & Medial Tibial Stress Syndrome

Podcast 47 is live !

Topics: Lots of cool stuff for your ears and brains today. Don’t miss this show on Allen’s Rule Part 2, ankle biosensors, Parkinson’s syndrome gait disorder, Medial Tibial Stress Syndrome, The Thigh Gap disorder, and the ever confusing and much debated Abductory Heel Twist in walking and in runners. Don’t miss this show !

A. Link to our server:

B. iTunes link:

C. Gait Guys online /download store (National Shoe Fit Certification and more !) :

D. other web based Gait Guys lectures:   type in Dr. Waerlop or Dr. Allen,  ”Biomechanics”


* Today’s show notes:

Neuroscience piece
1. Update on Allen’s Rule blog post:
2. Could a simple ankle sensor help with parkinsons symptoms ?
3. Probiotics Boost Running Performance in Heat
5 Gait Factoid:  the foot abductory twist
6.  Note from melissa on her 9 month leg pain.
7 . National Shoe Fit Program
8 . medial tibial stress syndrome
9. from a blog reader:
The thigh-gap obsession is not new but it’s the most extreme body fixation yet

Podcast 45: Spock, Ankle Syndesmosis injuries and Subways.

4.Scanadu scores $10.5M and paves the way for FDA trials

5 . National Shoe Fit Program
Knee Surg Sports Traumatol Arthrosc. 2010 Oct;18(10):1379-84. doi: 10.1007/s00167-009-1010-y. Epub 2009 Dec 18.

Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Branch TP, 

 7.from a blog reader:
schwad01 asked you:
Guys. I am a Parkinson’s patient … 
8. FAcebook reader:
9. In the News:

Russian Subways Now Accept Squats for Payment

10.In the research: