Those Multifidi

The multifidi are important proprioceptive sentinels for the low back, as well as the rest of the body, for virtually every activity you do weight bearing, including gait. They are implicated in many instances of low back pain, especially folks with flexion or extension intolerance, since their fiber orientation and thus mechanical advantage (or disadvantage) is dependent upon whether or not you are maintaining a normal lumbar lordosis.

Modalities which boost their function are an excellent adjunct to the rehabilitation process. Since they are not under volitional control (go ahead, try and contract your L2/L3 multifidus), they are innervated by the vestibulospinal tract and we must use proprioceptive work to engage them. Dry Needling is one modality that can help them to become functional again.

RESULTS and CONCLUSION:
“Significant difference was found in the percentage of change of muscle activation post needling between groups on the right side at level L4-5. A slight increase in the percentage of muscle activity, post procedure was observed in the dry needling group compared with the control group, although not significant in other segments examined. An improvement of back muscle function following dry needling procedure in healthy individuals was found. This implies that dry needling might stimulate motor nerve fibers and as such increase muscle activity.”

see also our post here.

J Back Musculoskelet Rehabil. 2015 Sep 6. [Epub ahead of print]
The immediate effect of dry needling on multifidus muscles’ function in healthy individuals. Dar G1,2, Hicks GE3.

 Why does this gal have so much limited external rotation of her legs? 

 We have discussed torsions and versions here on the blog many times before. We rarely see femoral antetorsion. She came in to see us with the pain following a total hip replacement on the right.

 Note that she has fairly good internal rotation of the hips bilaterally but limited external rotation. This is usually not the case, as most folks lose internal rotation. We need 4 to 6° internal and external rotation to walk normally. This poor gal has very little external rotation available to her.

Have you figured out what’s going on with hips yet? She has a condition called femoral ante torsion.   This means that the angle of the femoral neck is in excess of 12°. This will allow her to have a lot of internal rotation but very little external rotation.  She will need to either “create” or “borrow” her requisite external rotation from somewhere. In this case she decreases her progression of gait (intoed), and borrows the remainder from her lumbar spine.

 So what do we do? We attempt to create more external rotation. We are accomplishing this with exercises that emphasize external rotation, acupuncture/needling of the hip capsule and musculature which would promote external rotation (posterior fibers of gluteus medius,  gluteus maximus, vastus medialis, biceps femoris). A few degrees can go a very long way as they have in this patient. 

confused? Did you miss our awesome post on femoral torsions: click here to learn more.

A visual example of the consequences of a leg length discrepancy.

This patient has an anatomical (femoral) discrepancy between three and 5 mm. She has occasional lower back discomfort and also describes being very “aware” of her second and third metatarsals on the left foot during running.

You can clearly see the difference in where patterns on her flip-flops. Note how much more in varus wear on the left side compared to the right. This is most likely in compensation for an increased supination moment on that side. She is constantly trying to lengthen her left side by anteriorly rotated pelvis on that side and supinating her foot  and trying to “short” the right side by rotating the pelvis posteriorly and pronating the foot.

With the pelvic rotation present described above (which is what we found in the exam) you can see how she has intermittent low back pain. Combine this with the fact that she runs a daycare and is extremely right-handed and you can see part of the problem.

Leg length discrepancies become clinically important when they resulting in a compensation pattern that no longer works for the patient. Be on the lookout for differences and wear patterns from side to side.

So here is somewhat of a controversial subject.

Perhaps, though not discussed in this article, activating more axial extensors (vestbulospinal pathways, things like your erector spinae) could be somewhat protective, in that it could, at least theoretically, help to normalize flexor/extensor ratios in the lower extremity. 

We see flexor dominance (increased corticospinal activity) in many cases of lower extremity problems causing an imbalance. Perhaps activating extensors the lower extremity (tibialis interior, extensor digitorum longest, etc.) could explain, in part, some of these (controversial) results.

We’re not recommending or condoning taking up smoking to preserve your knees. This is merely food for thought in the ever-changing landscape of clinical application.

http://lermagazine.com/cover_story/smoking-knee-oa-from-clinical-controversy-to-therapeutic-possibility

Pain on the outside of the leg? Could it be your orthotic? What you wear on your feet amplifies the effect of the orthotic.

This woman presented with right-sided pain on the outside of her leg after hiking approximately an hour. She noticed a prominence of the arch in her right orthotic. She hikes in a rigid Asolo boot ( see below). Remember that footwear amplifies the effect of an orthotic!

In the pictures below you can see the prominent arch. The orthotic has her “over corrected” so that she toes off in varus on that side. The rigid footwear makes the problem worse. The peroneus group is working hard (Especially the peroneus longus)  to try and get the first Ray down to the ground.

The “fix” was to soften the arch of the orthotic and grind some material out. Look at the pictures where the pen is pointing to see how some of the midsole material was taken out. Notice how I ground it somewhat medial to further soften the arch.

She felt better much better after this change and is now a “happy hiker” 🙂

1st met pain in an orthotic?

This patient came in with pain at the base of the first metatarsal that she believed was related to her orthotic. The first picture shows the foots relationship to the orthotic. Notice how the sesamoid bones and distal aspect of the first metatarsal under lap the orthotic shell. In other words, the shell is longer than her foot. When she dorsiflexes her big toe, she’s hitting the distal of the orthotic.

The next view shows the orthotic with a typical first ray cutout. Notice how far forward the shell of the orthotic goes (next picture). I have placed a pen pointing to the area where the orthotic shell is too long.

In addition to reviewing her first ray descending exercises, a simple fix was to grind back the orthotic shell and be careful to bevel the edge so that it was not hitting the sesamoids and it did not impinge upon the descending first ray. I have placed a pen where the cut out now is (pre and post gluing in the pictures). The cork underlying the base of the first ray was also ground away (last picture)

A simple fix for a common problem. Make sure that your orthotic shell lengths fall just short of the 1st ray and not impinge on the sesamoids!

The Elusive Iliocapsularis

As with many things, one thing often leads to another. I had a patient with anterior hip pain and what i believed was iliopsoas dysfunction, but I wanted to know EXACTLY which muscles attached to the hip capsule, to make sure I wasn’t missing anything.

I turned up some great info, including a nice .pdf lecture, which I am including the link to along with a second paper that began my journey.

I had thought the iliopsoas attached to the hip capsule, but it turns out it doesn’t, but the iliocapsularis does along with a host of others, including one of my favs, the gluteus minimus, which was believed to be part of the psoas, but actually is a completely separate muscle.  Did I mention that these are  FREE, FULL TEXT articles?

Anyway, I began reading, with great interest, about the iliocapsularis and I found yet another great review paper on it, along with mechanical hip pain. This last paper has some real clinical pearls and I recommend reading it the next opportunity you have a bit of time.

I began thinking about when the iliopsoas fires in the gait cycle (terminal stance to mid swing). So, it is firing eccentrically at pre swing (perhaps limiting or attenuating hip extension?), then concentrically through early and mid swing, when it becomes electrically silent. During running gait, the activation pattern is similar. This muscle is also implicated in femoroacetabular impingement (FAI), or more correctly anterior inferior iliac spine subspine impingement (AIIS Impingement) or iliopsoas impingement (IPI). They all can cause anterior hip pain and they should all be considered in your differential.

The iliocapsularis muscle has its proximal attachment at the anterior-inferior iliac spine and the anterior hip capsule and does not attach to the labrum . Its distal insertion is just distal to the lesser trochanter. It can sometimes inset into the iliofemoral ligament and/or the trochanteric line of the femur. It is innervated by a branch of the femoral nerve (L2-4). It is believed to act to raise the capsule of the hip and be an accessory stabilizer of the hip. 

OK, there you have it. the iliocapsularis. Another muscle you didn’t know you could access. It pays to know your anatomy!

https://www.mcjconsulting.com/meetings/2012/asm/ePosters/files/ISHA_Poster_202.pdf

 http://pubs.rsna.org/doi/full/10.1148/radiol.12111320

Holy twisted tibias Batman! What is going here in this R sided knee pain patient?

In the 1st picture note this patient is in a neutral posture. Note how far externally rotated her right foot is compared to the left. Note that when you drop a plumbline down from the tibial tuberosity it does not pass-through or between the second and third metatarsals. Also note the incident left short leg
In the next picture both of the patients legs are fully externally rotated. Note the large disparity from right to left. Because of the limited extra rotation of the right hip this patient most likely has femoral retro torsion. This means that the angle of her femoral head is at a greater than 12° angle. We would normally expect approximately 40° of external Rotation. 4 to 6° is requisite for normal gait and supination.

In the next picture the patients knees are fully internally rotated you can see that she has an excessive amount of internal rotation on the right compare to left, confirming her femoral antetorsion.

When this patient puts her feet straight (last picture), her knees point to the inside causing the patello femoral dysfunction right greater than left. No wonder she has right-sided knee pain!

Because of the degree of external tibial torsion (14 to 21° considered normal), activity modification is imperative. A foot leveling orthotic with a modified UCB, also inverting the orthotic is helpful to bring her foot somewhat more to the midline (the orthotic pushes the knee further outside the sagittal plane and the patient internally rotate the need to compensate, thus giving a better alignment).

a note on tibial torsion. As the fetus matures, The tibia then rotates externally, and most newborns have an average of 0- 4° of internal tibial torsion. At birth, there should be little to no torsion of the tibia; the proximal and distal portions of the bone have little angular difference (see above: top). Postnatally, the tibia should twist outward (externally) a total of 15 degrees until adult values are reached between ages 8 and 10 years of 23° of external tibial torsion (range, 0° to 40°). more cool stuff on torsions here

Wow, cool stuff, eh?

What are we listening to this week? 

The Physio edge podcast with David pope. This week they interview Kurt Lisle about anterior knee pain. Here is our synopsis:

One of the things they empahasized right off the bat was that patellofemoral pain not only refers about the knee but also below or most importantly posterior to the knee. The fat pad had a tendency to refer more locally where is other structures can refer to other areas.

Aggravating factors for patello femoral dysfunctional pain tends to be flexion or activities involving flexion as well as compression of the knee and rest is in alleviating factor.

The fat pad pain tends to be to either side of the patellar tendon and sometimes directly under it. This can be aggravated by standing, particularly with the knee and hyperextension, which compresses the fat pad.

Patellar tendon pain tends to remain at the inferior pole of the patella on the tendon whereas patellofemoral pain has a tendency to refer more.

Physical examination pearls:

  • Patellar tendonopathy alone generally does not have effusion present where as the patellofemoral or fat pad injury may.
  • Is there pain in passive hyperextension? This generally can mean fat pad injury or potential he ligamentous injury.
  • Visually you may palpate a thickened fat pad, particularly in females.
  • Pain with passive motions generally points away from patellar tendon.
  • Dialing in as to where and when they are having their pain is an important part of the functional evaluation.

Kurt likes to do a table top examination first to ensure functional integrity of the knee before jumping right to functional tasks. His concerns are (which are valid) is the knee up to the task you’re about to ask it to do? Good advice here.
He emphasizes the need to be systematic and consistent in your examination, no matter how you examine them. Develop a routine that you follow each and every time. He recommends passively looking at the knee in extension and 90° flexion.

There is a discussion on functional movement about the hip and pelvis, knee, and foot and ankle. Emphasis is made, for example at the knee, as to “is the knee moving medially and laterally or are the femur and tibia rotating mediately or laterally” in which is precipitating the pain?

“Catching” of the patella is often due to patellofemoral pathology such as a subchondral defect, slap tear of the chondral surface, or abnormalities of the trochlea of the femur.

Advanced imaging strategies are also discussed with a brief overview of some of the things to look for.

Finally treatment strategies were discussed. It is emphasized that identifying the specific activity or change activities that’s causing any pain he’s made as well as activity modification. We were happy to hear that footwear and its role in knee as well as hepatology was discussed as well as looking at occupational contributions to the pain.

There was emphasis on exercise specificity particularly with respect to if the problem was unilateral not giving “blanket” exercises for both knees but rather concentrating on the symptomatic side.

A discussion on the use of EMG and activation patterns was also entertained with some good clinical pearls here. More marked rather than subtle changes and activation side to side seem to be more clinically significant. In other words, with respect training, can they achieve similar levels of activation on each side with a similar activity (for example isometric knee extension with the leg bent 60°).

The judicious use of tape from a functional testing standpoint was interesting. Emphasis was made that tape is not a cure and will merely a tool.

All in all and informative, concise podcast with some great clinical pearls and a nice review of the knee and patellofemoral pain.


link to PODcast: http://physioedge.com.au/pe-029-acute-knee-injuries-with-kurt-lisle/

Medial knee pain in a skier.   Considering an orthotic?  You had better know what you are doing! 

Can you guess why this gal has pain in both knees? Especially when skinning up a hill and skiing down? 

 Take a close look at the photos above and notice the orientation of her knee with her foot. Now look at you tuberosity and drop a line straight downward.  This line should pass through or slightly lateral to the second metatarsal shaft. Can you see how it falls to the outside of this? Perhaps even between the third and fourth metatarsal?

This gal has bilateral internal tibial torsion.  When she wears a standard foot bed (creates a level surface for the right for the foot) or an orthotic without appropriate posting, it pushes her knee outside of the saggital plane. This creates abnormal patellofemoral tracking  and appears to be a major contributor to her pain. 

 You will notice that we placed a valgus post under the orthotic(  a post that is canted from lateral to medial) which pushes her knee to the midline as the first ray descends.  You can see her alignment is better with her boots on and the changes. 

 The bottom line? Know your torsions and versions.  Posting a patient like this incorrectly could result in a meniscal disaster!