Pain on the outside of the leg? Could it be your orthotic? What you wear on your feet amplifies the effect of the orthotic.

This woman presented with right-sided pain on the outside of her leg after hiking approximately an hour. She noticed a prominence of the arch in her right orthotic. She hikes in a rigid Asolo boot ( see below). Remember that footwear amplifies the effect of an orthotic!

In the pictures below you can see the prominent arch. The orthotic has her “over corrected” so that she toes off in varus on that side. The rigid footwear makes the problem worse. The peroneus group is working hard (Especially the peroneus longus)  to try and get the first Ray down to the ground.

The “fix” was to soften the arch of the orthotic and grind some material out. Look at the pictures where the pen is pointing to see how some of the midsole material was taken out. Notice how I ground it somewhat medial to further soften the arch.

She felt better much better after this change and is now a “happy hiker” 🙂

1st met pain in an orthotic?

This patient came in with pain at the base of the first metatarsal that she believed was related to her orthotic. The first picture shows the foots relationship to the orthotic. Notice how the sesamoid bones and distal aspect of the first metatarsal under lap the orthotic shell. In other words, the shell is longer than her foot. When she dorsiflexes her big toe, she’s hitting the distal of the orthotic.

The next view shows the orthotic with a typical first ray cutout. Notice how far forward the shell of the orthotic goes (next picture). I have placed a pen pointing to the area where the orthotic shell is too long.

In addition to reviewing her first ray descending exercises, a simple fix was to grind back the orthotic shell and be careful to bevel the edge so that it was not hitting the sesamoids and it did not impinge upon the descending first ray. I have placed a pen where the cut out now is (pre and post gluing in the pictures). The cork underlying the base of the first ray was also ground away (last picture)

A simple fix for a common problem. Make sure that your orthotic shell lengths fall just short of the 1st ray and not impinge on the sesamoids!

Sometimes you need to run that valgus post clear back to the heel!

A valgus post assists in pronation. Some fols have modereate to severe internal tibial torsion and need to be able to pronate more to get the knee into the saggital plane for patello femoral conflicts. They usually run from the tail of the 5th metatarsal forward, but sometimes need to run it clear back to the heel to get enough pronation to occur.

Custom orthotic or Sham for mid tendon achilles tendonopathy? It doesn’t seem to matter.

This study prescribed eccentric calf exercises along with either a custom or “sham” foot orthosis for 140 people who were randomized as to which group got the real goods and which one did not.  A Victorian Institute Sports Assessment-Achilles questionairre was given at baseline, 1, 3, 6 and 12 months. No statistically significant difference between the groups.

Hmmm..

We wonder just what were the custom and sham like? When we use orthoses, we use full arch contact devices. Perhaps the type of orthosis makes a difference? What has been your experience?

Munteanu SE, Scott LA, Bonanno DR, Landorf KB, Pizzari T, Cook JL, Menz HB.  Effectiveness of customised foot orthoses for Achilles tendinopathy: a randomised controlled trial.
Br J Sports Med. 2015 Aug;49(15):989-94. doi: 10.1136/bjsports-2014-093845. Epub 2014 Sep 22.

Orthotics and Foot beds, What’s the Difference?

Welcome to rewind Friday Folks. Here is an oldie but a goodie, with lots of great information. Rememeber; if you use or prescribe orthotics, hopefully you are using exercises as well and hopefully, the prescription is changing over time and you are removing correction from the device!

Orthotics and footbeds, they’re the same thing, right? This is a question that is often posed to us.  No, they’re not the same, but oftentimes one or the other can be appropriate. To explain the difference, we need to understand a little bit about foot mechanics.

The foot is a biomechanical marvel.  It is composed of 26 bones and 31 articulations or joints.  The bones and joints work together in concert to propel us through the earth’s gravitational field.  It is a dynamic structure that is constantly moving and changing with its environment, whether it is in or out of footwear.  Problems with the bones or joints of the foot, or the forces that pass through them, can interfere with this symbiosis and create problems which we call diagnoses.  They can range from bunions, plantar fasciitis, shin splints, TFL syndrome, abnormal patellar tracking, and lower back pain just to name a few.

Before we go any further, we should talk a little bit about gait (ie walking pattern). Normal walking can be divided into 2 phases, stance and swing. Stance is the time that your foot is in contact with the ground. This is when problems usually occur. Swing is the time the opposite, non weight bearing foot is in the air.

 

The bones of the foot go through a series of movements while we are in stance phase called pronation and supination. Pronation is when your arch collapses slightly, to make your foot more flexible and able to absorb irregularities in the ground; this is supposed to happen right after your heel hits the ground. As your foot pronates, the leg rotates inward, which causes your knee to rotate in, which causes your thigh to rotate in, which causes you spine to flex forward. Supination is when your foot reforms the arch and makes your foot a rigid lever, to help you propel yourself; This is supposed to happen when you are pushing off with your toes to move forward. It is at this time that the entire process reverses itself, and your leg, knee, and thigh rotate outward and your spine extends backward. When these movements don’t occur, or more often, occur too much, is when problems arise. This can be due to many reasons, such as lack of movement between your foot bones (subluxation), muscle tightness, injury, inflammation, and so on.

Many people over pronate, due to incompetence of the intrinsic musculature of the lower kinetic chain, genetics, environmental factors or injuries. This means that their arch stays collapsed too long while in stance phase, and they remain pronated while trying to push off. As we discussed, during pronation the foot is a poor lever. This means you need to overwork to propel yourself forward. This can create arch pain, inflammation on the bottom of the foot (plantar fascitis), abnormal pressure on your foot bones (metatarsalgia), knee pain, hip pain and back pain.

Lets look at skiing. Skiing is a stance phase sport. While skiing, your foot stays relatively immobile in a ski or snowboard boot (i.e. it is not moving through a gait cycle). A footbed is designed to create a level surface for your feet and keep them in a neutral posture. It accomplishes this by “bringing the ground up to your foot.” They are generally custom designed to an individuals foot through many different methods. They work incredibly well (as long as the foot remains in a static posture) and many people extol the benefits and improvements in their respective sports when using these.

Orthotics are always custom made devices. They actually improve the mechanics of your foot (or give you mechanics you didn’t have before) and make it function more efficiently by altering the shape and function of the arch as the foot moves through various activities. They act like a footbed but have the added benefit of functioning while dynamic (i.e. moving) as well. This works as well or better than a footbed, and is usable in other sporting activities, such as Nordic skiing, snow shoeing, hiking, running, or biking. Many people use their orthotic in their everyday shoes, to help prevent some of the problems and symptoms they are experiencing. It should be emphasized that an orthotic IS NOT a substitution for competent musculature. We view them as an aid to assist the rehabilitation process; slowly pulling out correction as the biomechanical competence improves.  We like to call this “Orthotic Therapy”.

In summary, a footbed supports the foot in a neutral posture. It is great for activities where your foot is static or held in one position. An orthotic supports the foot in a neutral posture and improves the mechanical function of the foot. It can be used in static or dynamic activities. Remember to always consult with a professional who is well versed with the mechanics of the feet, ankles, knees, hips and back, since footbeds and orthotics have a profound effect on all these structures.

Orthotics and footbeds; they can be great assistive devices along the road to foot competence. And they can be great doorstops when you are done using them!

We are and remain..The Gait Guys.

Trojan horses for knee menisci.

 Orthotics and internal tibial torsion. Good? Bad? or Ugly? It depends…

Hopefully you remember about torsions, especially internal tibial torsion (see above). Tibial torsions are deviations (in this case, in the transverse plane) of the long axis of the bone. The bone is basically twisted along its long axis, like wringing out a wet towel. They are measured by drawing an imaginary line through the medial and lateral malleoli, as well as through the two halves of the tibial plateau, and measuring the angle between them (see 2nd picture above). For a more complete review of torsions, click here.

 At birth there should be little to no angular difference between the proximal and distal tibia, and this changes to about 19-22 degrees in the adult; the shaft of the tibia rotates outward (externally) with growth resulting in a normal tibial external version (see 3rd picture above).  Sometimes, the angular difference is less than zero at birth and the tibia does not rotate outward (externally) resulting in internal tibial torsion.

Internal tibial torsion usually results in a decreased progression angle (more on those here). This often causes a “toed in gait” and the foot remains in supination for a longer period of time (supination is adduction, inversion and plantar flexion), making the foot a rigid lever. When we examine the person in a standing position with the knees in the coronal plane, the feet point inward. When we move the feet to a more normal posture, the knees rotate outward from the coronal plane.

Folks with internal tibial torsion often have a forefoot varus (the forefoot is inverted with respect to the rear foot) because of the amount of supination they are in, which we talked about in the previous paragraph, (see also here). When folks have a forefoot varus, they have a tendency to pronate more through the forefoot, and when people pronate more other folks like to typically put them in orthotics to “get rid of that pronation”(because we all know that pronation is the scourge of humanity, and if there were less pronation in the world, there would probably be fewer wars, famine and poverty : )

 So what happens to the knee when we place an orthotic in the shoe? Most orthotics are designed to slow pronation of the midfoot, so they basically supinate the foot, causing the talus to dorsiflex, abduct and invert. This rotates the leg (and thus the knee) externally. With internal tibial torsion, often the knee is already externally rotated because your brain will not allow you to progress forward with your toes in too far, you would trip. So, the orthotic rotates the knee out further, bringing it outside the sagittal plane. This does not bode well long term, as it creates a rotational and friction conflict at the knee (remember the knee is basically a hinge between two ball and socket joints). Guess where the conflict manifests itself? At the meniscus. This, over time, is a great way to macerate a meniscus and create a problem.

Does this mean an orthotic is never indicated? No it does not. It means that if you use one, you should probably make sure the part of the orthotic anterior to the styloid of the 5th metatarsal has a valgus post built into it. This valgus moment will help to bring the knee back to the midline during the propulsive phase of gait. See our recent post here about forefoot valgus posting. Do you think this is ever considered in stores when dispensing foot beds for shoes ?  Not all foot beds are evil or a problem mind you, but we have seen some in stores that are real risky business if you ask us.

The bottom line? Know how to use the tools you have available, or someone is going to get hurt. When in doubt, exercise is usually a safer alternative and often has less likelihood of creating a Trojan Horse.  

Want to learn more about these kinds of things, foot beds, foot types etc ?  Our National Shoe Fit program will help you get smarter about this stuff. email us at : thegaitguys@gmail.com 

Gait Guys online /download store:http://store.payloadz.com/results/results.aspx?m=80204

The Gait Guys. Raising questions and providing answers and guidance, with each and every post.

 

all material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved. Please ask before lifting our wares. 

Orthotics and Footbeds. What’s the difference?

Orthotics and footbeds, they’re the same thing, right? This is a question that is posed to us all the time.  No, they’re not the same, but oftentimes one or the other can be appropriate. To explain the difference, we need to understand a little bit about foot mechanics.

The foot is a biomechanical marvel.  It is composed of 26 bones and 31 articulations or joints.  The bones and joints work together in concert to propel us through the earth’s gravitational field.  It is a dynamic structure that is constantly moving and changing with its environment, whether it is in or out of footwear.  Problems with the bones or joints of the foot, or the forces that pass through them, can interfere with this symbiosis and create problems which we call diagnoses.  They can range from bunions, plantar fasciitis, shin splints, TFL syndrome, abnormal patellar tracking, and lower back pain just to name a few.

Before we go any further, we should talk a little bit about gait (ie walking pattern). Normal walking can be divided into 2 phases, stance and swing. Stance is the time that your foot is in contact with the ground. This is when problems usually occur. Swing is the time the opposite, non weight bearing foot is in the air.

 

The bones of the foot go through a series of movements while we are in stance phase called pronation and supination. Pronation is when your arch collapses slightly, to make your foot more flexible and able to absorb irregularities in the ground; this is supposed to happen right after your heel hits the ground. As your foot pronates, the leg rotates inward, which causes your knee to rotate in, which causes your thigh to rotate in, which causes you spine to flex forward. Supination is when your foot reforms the arch and makes your foot a rigid lever, to help you propel yourself; This is supposed to happen when you are pushing off with your toes to move forward. It is at this time that the entire process reverses itself, and your leg, knee, and thigh rotate outward and your spine extends backward. When these movements don’t occur, or more often, occur too much, is when problems arise. This can be due to many reasons, such as lack of movement between your foot bones (subluxation), muscle tightness, injury, inflammation, and so on.

 

Many people overpronate. This means that their arch stays collapsed too long while in stance phase, and they remain pronated while trying to push off. As we discussed, during pronation the foot is a poor lever. This means you need to overwork to propel yourself forward. This can create arch pain, inflammation on the bottom of the foot (plantar fascitis), abnormal pressure on your foot bones (metatarsalgia), knee pain, hip pain and back pain.

 

Skiing is a stance phase sport. While skiing, your foot stays relatively immobile in a ski or snowboard boot (i.e. it is not moving through a gait cycle). A footbed is designed to create a level surface for your feet and keep them in a neutral posture. It accomplishes this by “bringing the ground up to your foot.” They are generally custom designed to an individuals foot through many different methods. They work incredibly well (as long as the foot remains in a static posture) and many people extol the benefits and improvements in their snow sports when using these.

 

Running, hiking and cycling are more dynamic. Sports like these demand a device that changes the biomechanics, so here an orthotic would be most appropriate.

 

Orthotics are always custom made devices. They actually improve the mechanics of your foot and make it function more efficiently by altering the shape and function of the arch as the foot moves through various activities. They act like a footbed but have the added benefit of functioning while dynamic (i.e. moving) as well. This works as well or better than a footbed, and is usable in other sporting activities, such as running, biking, hiking, skiing or snowbaording. Many people use their orthotic in their everyday shoes, to help prevent some of the problems and symptoms they are experiencing.

 

In summary, a footbed supports the foot in a neutral posture. It is great for activities where your foot is static or held in one position. An orthotic supports the foot in a neutral posture and improves the mechanical function of the foot. It can be used in static or dynamic activities. Remember to always consult with a professional who is well versed with the mechanics of the feet, ankles, knees, hips and back, since footbeds and orthotics have a profound effect on all these structures.

The Gait Guys. Bring you info you can use, each and every day.

All material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved.