What’s wrong with this picture?

 The model is obviously well sculpted and hopefully will paid for the toll that this exercise will be taking on her nervous system overtime. Take a close look at the picture above on the left. Look carefully and what do you notice? Do you see it?

This exercise is neurologically incongruent.  Her right arm is flexed at the same time as her right hip. When does this ever happen in gait?

 Do you remember crossed extensor responses or tonic neck reflexes? If not, see here and here. When we walk the right arm and left leg or flexed while the left arm and right leg are extended. During a tonic neck response, and that is rotated to one side the upper and lower extremity (upper greater than lower) should extend on that side with flexion on the contralateral side.

During a tonic neck reflex, the head is rotated to one side the upper and lower extremity (upper greater than lower) should extend on that side with flexion on the contralateral side. In the picture above her torso is rotated to the left while looking straight ahead which is effectively right neck rotation and her extremities are flexed on that side.

 In the picture above her torso is rotated to the left while looking straight ahead which is effectively right neck rotation and her extremities are flexed on that side.

Who thinks of these things? Certainly not folks that are paying attention to appropriate neurology and physiology!  Oh yeah, and the ad was for massage cream. Jeez…

Welcome to Monday and News You Can Use. Got Arm swing? This exercise, borrowed from Shirley Saurmann can be a great adjunct to your rehab program, dispensed with some muscle physiology : )

Do it on your self
Try it on a client
Teach someone else

More on Stretching? Enough already, eh?

The last few weeks , we have been talking about techniques to improve your (or your clients) stretching experience. 1st, we talked about reciprocal inhibition here. Next we talked about post isometric inhibition here. The we spoke about the symmetrical tonic neck reflex (response) here. If there is a symmetrical tonic neck reflex, then there must be an asymmetrical one as well, eh? That is the topic of todays discussion

The asymmetrical tonic neck reflex was 1st described by Magnus and de Kleyn in 1912 (1). Like in the pictures above, when the head is rotated to one side, there is ipsilateral extension of the upper and lower extremity on that side, and flexion of the contralateral (the side AWAY from where you are rotating) upper and lower extremity. Take a few minutes to see the subtleness of the reflex in the pictures above. Now think about how this occurs in your clients/patients.  The reflex is everywhere!

The reflex persists into adulthood (2) and is modulated by both eye movement and muscular activity (3). When there is neurological compromise, the reflex can be more prevalent, and it seems to arise from the joint mechanoreceptors in the neck and its connection to the reticular formation of the brainstem (4). It may modulate blood flow and cardiovascular activity as well (5). 

So, how can we take advantage of this? We could follow in the footsteps of Berta Bobath (6) and incorporate these into our rehabilitation programs, which we have done, quite successfully. But rather than read a whole book, lets talk about how you could incorporate this into your stretching program. 

Let’s say you want to stretch the right hamstring:

  • actively rotating the head to the right (see reference 3) facilitates the right tricep and right quadricep AND facilitates the left bicep and left hamstring
  • through reciprocal inhibition, this would inhibit the right bicep and hamstring AND left tricep and left quadricep
  • To get a little more out of the stretch, you could actively contract the right tricep and quadricep (MORE reciprocal inhibition), amplifying the effect

We encourage you to try this, both on yourself and your clients. It really works!

Wow, isn’t neurology cool? And you thought it was only for geeks!

The Gait Guys. Giving you info you can use in a practical manner, each and every post. Be a geek. Spread the word. 

  1. http://www.worldneurologyonline.com/article/arthur-simons-tonic-neck-reflexes-hemiplegic-persons/#sthash.6QS3Eat3.dpuf 
  2. Bruijn SM1, Massaad F, Maclellan MJ, Van Gestel L, Ivanenko YP, Duysens J. Are effects of the symmetric and asymmetric tonic neck reflexes still visible in healthy adults?Neurosci Lett. 2013 Nov 27;556:89-92. doi: 10.1016/j.neulet.2013.10.028. Epub 2013 Oct

  3. Le Pellec A1, Maton B. Influence of tonic neck reflexes on the upper limb stretch reflex in man. J Electromyogr Kinesiol. 1996 Jun;6(2):73-82.

  4. Michael D. Ellis, Justin Drogos, Carolina Carmona, Thierry Keller, Julius P. A. Dewal Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke Journal of NeurophysiologyDec 2012,108(11)3096-3104;DOI: 10.1152/jn.01030.2011

  5. Hervé Normand, Olivier Etard and Pierre Denise Otolithic and tonic neck receptors control of limb blood flow in humans J Appl Physiol  82:1734-1738, 1997.

  6. Berta Bobath, Chartered Society of Physiotherapy (Great Britain)  Abnormal postural reflex activity caused by brain lesions Aspen Systems Corp. Rockville, MD, 1985 –

Heads up!

Remember that song “Hold Your Head Up” by the British  band “Argent” in 1972? Ok, maybe not, but the principle is very important to runners and sprinters, so lets talk about it a bit. 

We are wired to maintain our visual axes parallel to the horizon. This involves a series of joint and muscle mechanoreceptors in the neck (for a review of joint mechanoreceptors, click here, muscle mechanoreceptors, click here). These muscle and joint mecanoreceptors receptors, through connections in the midbrain (or mesencephalon as we neuro geeks like to call it) and pons, interact with the vestibular system to keep our head (and our bodies) upright, by firing our extensor muscles.

Berta Bobath, physiotherapist, wrote a great book in 1965 entitled “Abnormal Postural Reflex Activity Caused By Brain Lesions”. In it she describes, among many things, reflexes involving the cervical spine and correlating them to motor function. One of these is the cervical extensor reflex.

To explain this reflex, think of a dog sitting to get a treat. As he looks up while sitting down he has to extend his head, extend his front legs and fires all the axial extensor muscles associated with performing this action. The opposite would also happen, but with the flexors, if he were to bend forward to take a drink; fire front flexors and rear extensors to bend down. There are many more reflexes (tonic neck, cervcio ocular, etc) that could be the subject of another post.

As we have learned from the principle of facilitation (see recent post here), when we fire pur extensors, we fire into the extensor pool, and as a result, ALL extensors get to benefit. The advantage of the receptors in the cervial spine is that the upper four fire DIRECTLY into the flocculo nodular lobe of the cerebellum, and thus have a PROFOUND EFFECT on extensor tone in general.

So, if you want to go faster, why not hold your head up and FIRE YOUR EXTENSORS MORE? Hmmm….Where have you heard this before?

Another magic bullet, courtesy of your built in neurology, we are sharing with you so you and your clients, patients and friends can be better at what they do

The Gait Guys. Stretching your neurology on a daily basis.

Do you bank your head into the turns when you run corners ? You had better !

From time to time we get asked, why have you guys focused so intently on gait ?  Our answer is always the same. It is the most frequently engaged motor pattern that the body does other than breathing. Without the ability to walk our health declines on many levels.  And, because gait impacts every aspect of the human organism when it comes to locomotion.  All too often gait is thought of as what the feet are doing. We see this as evidenced by how many shoe stores still just do a foot treadmill video analysis, but thankfully, many stores have gotten the message from somewhere that the rest of the body is vital to the assessment as well. However,  how many of you are capturing the  head on your gait analysis ?  The head is where the software exists. Balance, visual, many proprioceptive centers, auditory and the processing of these and more are all located north of all of the other body parts.  

We have done many previous blog posts on the visual and auditory centers and how they impact gait.  You can goto our blog and type these into our SEARCH box and read more about these topics however today we wanted to share with you an article that is a few years older to show that there are many predictive gait parameters that are pre-calculated and have a huge determining effect and outcome on one’s gait. 

Anticipatory head movements during turns, whether running on a banked track, taking tight turns on your local road, trail running on the side of slopes or even when biking and trail riding, all occur in order to gather advance visual information about the trajectory and potential obstacles.  Below is an abstract that pretty much speaks for itself and you should read it. In the study they investigate the relationship between head and trunk movements during ambulation.  They discuss how the head makes its calculated turn prior to the trunk turning, setting up the body for a proper negotiation of the banking of the turn thus gathering “visual information about the trajectory and potential obstacles”. 

If you are truly a gait geek, you should get a little warm and fuzzy about this. And if you do not, well, you might still be a gait geek if you think a bit further about this and understand that cervical spine stability and mobility can negatively or positively affect the outcome.  It just goes to prove once again, if you are going to address someones gait, you better have a clinical examination as part of their gait assessment if you want to truly find out where their impairment exists, and hides. If you depend solely on video, you are most likely giving advice on missing information, this we pretty much promise you. For example, we recall a younger lady from a few years ago, a patient of ours, who was left with unilateral deafness from a vaccine complication (MMR vaccine). She would always have her better ear turned more forward to gain an auditory edge to her hearing loss on the opposite side (we all do the same thing when we are talking to someone in a loud place). What we noticed, and what she was unaware of, what that this impaired her arm swing bilaterally making the one side swing more and the other less (which was a huge clue into her shoulder problem that she was seeing us for).  This in turn, because they are neurologically connected by reflexive locomotion patterns, impaired swing and stance phases of her gait on both sides.  It just goes to prove our point earlier, and to further make the point that, you cannot impact symmetry in one place and not expect that the body will not compensate for that asymmetry elsewhere. It is all connected … . you know the song.

If you are a gait geek, you can see the entire picture of the human organism clearer than many others.  

Enjoy the whole abstract below for the great details by Sreenivasa et al.

* Shawn and Ivo …….. not your average wild and crazy guys……unless there is a gait topic to talk about.

Exp Brain Res. 2008 Nov;191(3):313-20. doi: 10.1007/s00221-008-1525-3. Epub 2008 Aug 8.

Walking along curved paths of different angles: the relationship between head and trunk turning.

Sreenivasa MN, Frissen I, Souman JL, Ernst MO.


Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, 72076 Tübingen, Germany.


Walking along a curved path requires coordinated motor actions of the entire body. Here, we investigate the relationship between head and trunk movements during walking. Previous studies have found that the head systematically turns into turns before the trunk does. This has been found to occur at a constant distance rather than at a constant time before a turn. We tested whether this anticipatory head behavior is spatially invariant for turns of different angles. Head and trunk positions and orientations were measured while participants walked around obstacles in 45 degrees, 90 degrees, 135 degrees or 180 degrees turns. The radius of the turns was either imposed or left free. We found that the head started to turn into the direction of the turn at a constant distance before the obstacle (approximately 1.1 m) for turn angles up to 135 degrees . During turns, the head was consistently oriented more into the direction of the turn than the trunk. This difference increased for larger turning angles and reached its maximum later in the turn for larger turns. Walking speeds decreased monotonically for increasing turn angles. Imposing fixed turn radii only affected the point at which the trunk started to turn into a turn. Our results support the view that anticipatory head movements during turns occur in order to gather advance visual information about the trajectory and potential obstacles.