Why does this gal have so much limited external rotation of her legs? 

 We have discussed torsions and versions here on the blog many times before. We rarely see femoral antetorsion. She came in to see us with the pain following a total hip replacement on the right.

 Note that she has fairly good internal rotation of the hips bilaterally but limited external rotation. This is usually not the case, as most folks lose internal rotation. We need 4 to 6° internal and external rotation to walk normally. This poor gal has very little external rotation available to her.

Have you figured out what’s going on with hips yet? She has a condition called femoral ante torsion.   This means that the angle of the femoral neck is in excess of 12°. This will allow her to have a lot of internal rotation but very little external rotation.  She will need to either “create” or “borrow” her requisite external rotation from somewhere. In this case she decreases her progression of gait (intoed), and borrows the remainder from her lumbar spine.

 So what do we do? We attempt to create more external rotation. We are accomplishing this with exercises that emphasize external rotation, acupuncture/needling of the hip capsule and musculature which would promote external rotation (posterior fibers of gluteus medius,  gluteus maximus, vastus medialis, biceps femoris). A few degrees can go a very long way as they have in this patient. 

confused? Did you miss our awesome post on femoral torsions: click here to learn more.

A visual example of the consequences of a leg length discrepancy.

This patient has an anatomical (femoral) discrepancy between three and 5 mm. She has occasional lower back discomfort and also describes being very “aware” of her second and third metatarsals on the left foot during running.

You can clearly see the difference in where patterns on her flip-flops. Note how much more in varus wear on the left side compared to the right. This is most likely in compensation for an increased supination moment on that side. She is constantly trying to lengthen her left side by anteriorly rotated pelvis on that side and supinating her foot  and trying to “short” the right side by rotating the pelvis posteriorly and pronating the foot.

With the pelvic rotation present described above (which is what we found in the exam) you can see how she has intermittent low back pain. Combine this with the fact that she runs a daycare and is extremely right-handed and you can see part of the problem.

Leg length discrepancies become clinically important when they resulting in a compensation pattern that no longer works for the patient. Be on the lookout for differences and wear patterns from side to side.

 Every foot has a story. 

 This is not your typical “in this person has internal tibial torsion, yada yada yada” post.  This post poses a question and the question is “Why does this gentleman have a forefoot adductus?”

The first two pictures show me fully internally rotating the patients left leg. You will note that he does not go past zero degrees and he has femoral retroversion. He also has bilateral internal tibial torsion, which is visible in most of the pictures. The next two pictures show me fully internally rotating his right leg, with limited motion, as well and internal tibial torsion, which is worse on this ® side

 The large middle picture shows him rest. Note the bilateral external rotation of the legs. This is most likely to create some internal rotation, because thatis a position of comfort for him (ie he is creating some “relief” and internal rotation, by externally rotating the lower extremity)

 The next three pictures show his anatomically short left leg. Yes there is a large tibial and small femoral component. 

 The final picture (from above) shows his forefoot adductus. Note that how, if you were to bisect the calcaneus and draw a line coming forward, the toes fall medial to a line that would normally be between the second and third metatarsal’s. This is more evident on the right side.  Note the separation of the big toe from the others, right side greater than left. 

Metatarsus adductus deformity is a forefoot which is adducted in the transverse plane with the apex of the deformity at LisFranc’s (tarso-metatarsal) joint. The fifth metatarsal base will be prominent and the lateral border of the foot convex in shape . The medial foot border is concave with a deep vertical skin crease located at the first metatarso cuneiform joint level. The hallux (great toe) may be widely separated from the second digit and the lesser digits will usually be adducted at their bases. ln some cases the abductor hallucis tendon may be palpably taut just proximal to its insertion into the inferomedial aspect of the proximal phalanx (1)

Gait abnormalities seen with this deformity include a decreased progression angle, in toed gait, excessive supination of the feet with low gear push off from the lesser metatarsals. 

 It is interesting to note that along with forefoot adductus, hip dysplasia and internal tibial torsion are common (2) and this patient has some degree of both. 

 His forefoot adductus is developmental and due to the lack of range of motion and lack of internal rotation of the lower extremities, due to the femoral retrotorsion and internal tibial torsion.  If he didn’t adduct the foot he would have to change weight-bearing over his stance phase extremity to propel himself forward. Try internally rotating your foot and standing on one leg and then externally rotating. See what I mean? With the internal rotation it moves your center of gravity over your hip without nearly as much lateral displacement as would be necessary as with external rotation. Try it again with external rotation of the foot; do you see how you are more likely displace the hip further to that side OR lean to that side rather than shift your hip? So, his adductus is out of necessity.

Interesting case! When you have a person with internal torsion and limited hip internal rotation, with an adducted foot, think of forefoot adductus!

1.  Bleck E: Metatarsus adductus: classification and relationship to outcomes of treatment. J Pediatric Orthop 3:2-9,1983.

2. Jacobs J: Metatarsus varus and hip dysplasia. C/inO rth o p 16:203-212, 1960

“Due to the shape of the condyles and the menisci, and the location of ligaments of and muscles acting on the knee, the joint rotation axis is located medially in the knee joint. This also in part explains why the lateral condyle and meniscus are more mobile. Maximum extension of the knee is caused by these factors and the “screw home” mechanism of the cruciate ligaments. The popliteal muscle is connected with the lateral meniscus and the caput fibulae: it locks the knee joint in and unlocks the knee joint out of its maximum extension. Moreover, it plays an important role for proprioception in the knee joint and is known to cause posterolateral knee pain.

from: http://www.anatomy-physiotherapy.com/…/94-test-your-knowled…

All that is twisted is not tibial

Last week we posted on measuring tibial torsions (click here to read that post). This week we are posting on measuring the other, often over looked torsion: “femoral torsion”.

Perhaps you have read some of our posts on femoral torsion, particularly this one.

We remember that as hip (thigh) flexion increases, the amount of internal rotation of the femur decreases. This is due largely to the direction of the hip capsule ligaments (ishiofemoral, iliofemoral and pubeofemoral ligaments) “spiraling” from their attachment from the femur to the innominate. This may seem like a subtle detail until you thing about how much hip flexion occurs when we do a squat, and what exactly, is the position of our feet.

We start life with the hips anteverted (ie, the angle of the neck of the femur with the shaft of the femur is > 12 degrees; in fact at birth it is around 35 degrees) and this angle should decrease as we age to about 8-12 degrees). When we stand, the heads of our femurs point anteriorly; it is just a matter of how much (ante version or ante torsion) or how little  (retro version or retro torsion) that is. If you are a precise person and would really like to geek out on the difference between versions or torsions, check out this post here

Measurement is important, because the more retro torsion you have (ie, the smaller the angle is), the less internal rotation of the femur you will have available to you. An important fact if you are planning on squatting. 

An easy way to do this is by approximating the angle of the femoral neck by performing “Craig’s Test”. Have your patient/client/athlete lie prone with their knee flexed 90 degrees. Palpate the greater trochanter (the bump on the side of the hip that the gluteus medius muscles attach to) with one hand while using the other hand to grasp around the ankle and internally and externally rotate the femur (we like to use the right hand on the right trochanter for the patient/client/athletes right leg). Note the position of the tibia when the greater trochanter is parallel to the table (see diagram above from Tom Michaud’s most excellent text: Human Locomotion: the conservative management of gait related disorders, available by clicking here). The smaller the angle, the more retro version/torsion present). 

This is also a convenient way to estimate the amount of internal and external rotation of the femur available. One source states that internal rotation of greater than 70 degrees and external rotation of less than 25 degrees means that there is excessive femoral ante torsion present (1).

Craig’s Test: a convenient way to measure torsions of the femur. Important if you squat! Brought to you by The Gait Guys: Uber Gait Geeks Extrodinaire. 

(1) Staheli LT. Rotational problems in the lower extremity. Orthop Clin North Am, 1987; 18:503-512

Subtle clues. Helping someone around their anatomy

This patient comes in with low back pain of years duration, helped temporarily with manipulation and activity. Her exam is relatively benign, save for increased lumbar discomfort with axial compression in extension and extension combined with lateral bending. Believe it or not, her abdominal and gluteal muscles (yes, all of them) test strong (no, we couldn’t believe it either; she is extremely regular with her exercises). She has bilateral internal tibial torsion (ITT) and bilateral femoral retro torsion (FRT). She has a decreased progression angle of the feet during walking and the knees do not progress past midlilne. There is a loss of active ankle rocker with gait, but not on the exam table; same with hip extension. 

We know she has a sweater on which obscures things a bit, but this is what you have to work with. Look carefully at her posture from the side. The gravitational line should pass from the earlobe, through the shoulder, greater trochanter and through or just anterior to the lateral malleolus.

In the top picture, can you see how her pelvis is anterior to this line? Do you see how it gets worse when she lifts her hands over her head (yes, they are directly over head)? This can signify many things, but often indicates a lack of flexibility in the lumbar lordosis; in this case, she cannot extend her lumbar spine further so she translates her pelvis forward. Most folks should have enough range of motion from a neutral pelvis and enough stability to allow the movement to occur without a significant change. Go ahead, we know you are curious, go watch yourself do this in a mirror and see if YOU change.

Looking at the bottom left picture, can you pick out that she has a genu valgus? Look at the hips and look at the tibial angle.

In the bottom left picture, did you note the progression angle (or lack of) in her feet? This is a common finding (but NOT pathognomonic) in patients with internal tibial torsion. Notice the forefoot adductus on the right foot?

So what do we think is going on?

  • ITT and FRT both limit the amount of internal rotation of the thigh and lower leg. Remember you NEED 4 degrees of each to walk normally. Most folks have significantly more
  • if you don’t have enough internal rotation of the lower extremity, you will need to “create” it. You can do this by extending the lumbar spine (bottom picture, right) or externally rotating the lower extremity
  • Since her ITT and FRT are bilateral, she flexes the pelvis and nutates the pelvis anteriorly.
  • the lumbar facet joints should only carry 20% of load
  • she is increasing the load and causing facet imbercation resulting in LBP.

What did we do?

  • taught her about neutral pelvic positioning, creating more ROM in the lumbar spine
  • had her consciously alter her progression angle of her foot on strike, to create more available ROM in internal rotation
  • encouraged her to wear neutral shoes
  • worked on helping her to create more ankle rocker and hip extension with active drills and exercise (ie gait rehabilitation); shuffle walks, Texas walk, toes up walking, etc

why didn’t we put her in an orthotic to externally rotate her lower extremity? Because with internal tibial torsion, this would move her knee outside the saggital plane and create a biomechanical conflict at the knee and possibly compromising her meniscus.

Cool case, eh? We thought so. Keep on learning so your brain keeps expanding. If you are not growing your brain, you are shrinking it!

The Gait Guys

You can only “borrow” so much before you need to “pay it back”

How can feet relate to golf swing?

This 52 year old right handed gentleman presented with pain at the thoracolumbar junction after playing golf. He noticed he had a limited amount of “back swing” and pain at the end of his “follow through”.

Take a look a these pix and think about why.

Hopefully, in addition to he having hairy and scarred legs (he is a contractor by trade), you noted the following

  • Top left: note the normal internal rotation of the right hip; You need 4 degrees to walk normally and most folks have close to 40 degrees. He also has internal tibial torsion.
  • Top right: loss of external rotation of the right hip. Again, you need 4 degrees (from neutral) of external rotation of the hip to supinate and walk normally.
  • Top center:normal internal rotation of the left hip; internal tibial torsion
  • 3rd photo down: limited external rotation of the left hip, especially with respect ti the amount of internal rotation present; this is to a greater degree than the right
  • 4th and 5th photos down: note the amount of tibial varum and tibial torsion. Yes, with this much varum, he has a forefoot varus.

The brain is wired so that it will (generally) not allow you to walk with your toes pointing in (pigeon toed), so you rotate them out to somewhat of a normal progression angle (for more on progression angles, click here). If you have internal tibial torsion, this places the knees outside the saggital plane. (For more on tibial torsion, click here.) If you rotate your extremity outward, and already have a limited amount of range of motion available, you will take up some of that range of motion, making less available for normal physiological function. If the motion cannot occur at the knee or hip, it will usually occur at the next available joint cephalad, in this case the spine.

The lumbar spine has a limited amount of rotation available, ranging from 1.2-1.7 degrees per segment in a normal spine (1). This is generally less in degenerative conditions (2).

Place your feet on the ground with your feet pointing straight ahead. Now simulate a right handed golf swing, bending slightly at the waist and  rotating your body backward to the right. Now slowly swing and follow through from right to left. Note what happens to your hips: as you wind back to the right, the left hip is externally rotating and the right hip is internally rotating. As you follow through to the left, your right, your hip must externally rotate and your left hip must externally rotate. Can you see how his left hip is inhibiting his back swing and his right hip is limiting  his follow through? Can you see that because of his internal tibial torsion, he has already “used up” some of his external rotation range of motion?

If he does not have enough range of motion in the hip, where will it come from?

he will “borrow it” from a joint more north of the hip, in this case, his spine. More motion will occur at the thoracolumbar junction, since most likely (because of degenerative change) the most is available there; but you can only “borrow” so much before you need to “Pay it back”. In this case, he over rotated and injured the joint.

What did we do?

  • we treated the injured joint locally, with manipulation of the pathomechanical segments
  • we reduced inflammation and muscle spasm with acupuncture
  • we gave him some lumbar and throacolumbar stabilization exercises: founders exercise, extension holds, non tripod, cross crawl, pull ups
  • we gave him foot exercises to reduce his forefoot varus: tripod standing, EHB, lift-spread-reach
  • we had him externally rotate both feet (duck) when playing golf

The Gait Guys. Helping you to store up lots “in your bank” of foot and gait literacy, so you can help people when they need to “pay it back”, one case at a time.

(1) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223353/

(2) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705911/

Hmmm. We are fully internally rotating this gentleman’s lower leg (and thus hip) on each side. What can you tell us?

Look at the upper picture. Does the knee go past midline? NO! So we have limnited internal rotation of the hip. What are the possible causes?

  • femoral retro torsion
  • tight posterior capsule of hip
  • OA of hip
  • tight gluteal group (max or posterior fibers of medius)
  • labral derangement

Now line up the tibial tuberosity and the foot. What do you see? The foot is externally rotated with respect to the leg. What are the possible causes?

  • external tibial torsion
  • subtalar valgus
  • fracture/derangement causing this position

Now look at the bottom picture. Awesome forearm and nice choice of watch. Good thing we didn’t wear Mickey Mouse!

Look at upper leg. Hmm. Same story as the right side.

Look at the lower leg and line up the tibial tuberosity and the foot. What do you see? The foot is internally rotated with respect to the leg. What are the possible causes?

  • internal tibial torsion
  • subtalar varum
  • fracture/derangement causing this position

So this individual will have very different lower leg mechanics on the right side compared to the left (external torsion right, internal left). We refere to this as “windswept” biomechanics, as it looks like the wind came in from the right and “swept” the feet together to the left.

What will this look like? Most likely increased pronation on the right and supination on the left. What may we see?

  • calcaneal (rearfoot) valgus on right
  • calcaneal (rearfoot) varum on the left
  • bilateral knee fall to midline
  • knee fall to midline on right occurring smoother than on left
     (the patient has an uncompensated forefoot varus bilaterally; he is already partially pronated on the right, so it may appear to be less abrupt)
  • toeing off in supination more pronounced on the left (due to the internal torsion and forefoot varus)

The Gait Guys. Increasing your foot and gait IQ with each and every post.

So, What’s going on here?

Remember torsions and versions? If not, click here, here, here and here for a review. 

In the top left view, you are seeing the left foot in a neutral posture with the knee in the (relative) midline. Notice how the foot adducts? This person has INTERNAL TIBIAL TORSION. They also have hammer toes and a cavus (high) arch. 

In the top right, the foot is again in a neutral posture and the R foot is adducted EVEN FARTHER. Again, internal tibial torsion along with hammer toes and a cavus foot. For a hint, look at the tibial tuberosity; it should line up with an imaginary line drawn through the 2nd metatarsal. 

In the middle left picture I am fully internally rotating the R leg. Hmm, no internal rotation of the hip (note the knee goes little beyond midline). You need 4 degrees of internal rotation of the hip to walk normally and most folks have 40 degrees. This person has FEMORAL RETROTORSION.

In the middle right picture I am fully internally rotating the L leg. Hmm, no internal rotation of the hip here either; in fact, even less than the right. Again, FEMORAL RETROTORSION. 

In the bottom two pictures, the goniometer is aligned with the ASIS and tibial tuberosity. I am not sure if you can see it, but it is 18 degrees on the left and 20 on the right. Normally the Q angle is between 8 and 12 degrees. This person has developed compensatory GENU VALGUS.

Does it surprise you he has pain on the outside of his feet? How about knee pain?

So what does this mean?

  • he will have a decreased progression angle of the feet
  • he will externally rotate the feet to allow a more normal progression angle and “create” the internal rotation of the hip needed
  • this will place the knee out side the saggital plane and create a potential conflict at the knee
  • he will stress the ligaments at the medial knee secondary to his valgus deformity
  • he will increase the pressure on the lateral condles of the femur and lateral tibial plateau, leading to early degeneration

So what do you do?

  • normalize, to the best of his (and your) abilities, foot and lower extremity mechanics with manipulation, exercise, etc
  • ensure he has an adequate foot tripod with the tripod and EHB exercises
  • In his case, construct an orthotic, which will correct rearfoot pronation and yet not push the knee outside the saggital plane, by having a forefoot valgus post in place
  • educate him about proper footwear with an adequate toe box and not too much torsional rigidity (ie no motion control features)
  • follow him at regular intervals to make sure he doesn’t fall off the turnip truck
The Gait Guys. Making it real, every day, every post, every PODcast.
all material copyright 2013 The Gait Guys/ The Homunculus Group.

OK Folks

Take a look at these pics for a moment, then come back and read.

Ready? Lets see how much you remember about torsions and versions. Take a look at this child that was brought in by their parent (legs were too short to drive themselves : )  ) They were wondering if the child needed orthotics. What do we see?

top left photo: legs are in a neutral position. note the position of the knee (more specifically the tibial tuberosity and patellae can sometimes fake you out. ( OK, maybe not you, but they can sometimes fake SOME people out). The plane of the 2nd metatarsal is LATERAL to the tibial tuberosity, This is EXTERNAL TIBIAL TORSION; it appears greater on the (patients) right (look also at the left lower leg in the center picture as well, it has less torsion). Note also the lower longitudinal arches bilaterally (they are typically higher in non-weightbearing but in children this young they are typically lower in the early stages).

top right photo: I am fully internally rotating the right lower leg and hip. Note the position of the knee; it does not rotate as much as you would expect (normally 40 degrees) when compared to the distance the foot seems to have travelled. This hip is RETRO-TORSIONED (remember we are born anteverted about 40 degrees, which decreases approximately 1.5 degrees per year to puberty, resulting in an 8-12 degree angle in the adult. If you need a review, go back and read the February 27th post). Go back and read our 5 part series on Versions and Torsions (“Are you Twisted ?”).

Center photo: I am fully externally rotating the right leg. Note that range of motion is much greater than internal rotation and exceeds 40 degrees. This supports the previous paragraph, retro-torsion.

Bottom left: I am fully internally rotating the left lower leg. It appears normal  with about 40 degrees (or more) of internal rotation. This femur is NORMAL or has NORMAL FEMORAL VERSION.

Bottom right: I am externally rotating the left leg. Motion appears to mimic internal rotation and is approximately equal. This supports the previous paragraph as NORMAL FEMORAL VERSION.                               

In summary:

  • External tibial torsion, R > L
  • flattened longitudinal arches
  • Right femoral retrotorsion
  • Left femoral version, NORMAL

Well, what do you think? Are orthotics going to help this kiddo? No, probably not, they may even make the problem worse, by slowing derotation of the talar head, forcing them into more permanent varus of the forefoot.                                                                                                           

How did you do? Can you see now why torsions and versions (the degree of “twistedness” of a limb is so important? They help you understand skeletal development and help you to make clearer decisions.

The Gait Guys. Twisted in a good way. Versioned but not torsioned.

all material copyright 2013 The Gait Guys/The Homunculus Group. all rights reserved. please don’t use our stuff without asking : )