One way to correct an dysfunctional Extensor Hallucis Brevis

The Extensor Hallicus Brevis, or EHB  (beautifully pictured above causing the  extension (dorsiflexion) of the proximal big to is an important muscle for descending the distal aspect of the 1st ray complex (1st metatarsal and medial cunieform) as well as extending the 1st metatarsophalangeal joint.

Since this muscle is frequently dysfunctional, and is one of THE muscles than can lower the head of the 1st metatarsal, along with the peroneus longus and most likely the tibialis posterior (through its attachment to the 1st or medial cunieform), needling can often assist in normalizing function and works especially well, when coupled with an appropriate rehab program. Here is one way to needle it effectively. 

What’s wrong with this picture?

 The model is obviously well sculpted and hopefully will paid for the toll that this exercise will be taking on her nervous system overtime. Take a close look at the picture above on the left. Look carefully and what do you notice? Do you see it?

This exercise is neurologically incongruent.  Her right arm is flexed at the same time as her right hip. When does this ever happen in gait?

 Do you remember crossed extensor responses or tonic neck reflexes? If not, see here and here. When we walk the right arm and left leg or flexed while the left arm and right leg are extended. During a tonic neck response, and that is rotated to one side the upper and lower extremity (upper greater than lower) should extend on that side with flexion on the contralateral side.

During a tonic neck reflex, the head is rotated to one side the upper and lower extremity (upper greater than lower) should extend on that side with flexion on the contralateral side. In the picture above her torso is rotated to the left while looking straight ahead which is effectively right neck rotation and her extremities are flexed on that side.

 In the picture above her torso is rotated to the left while looking straight ahead which is effectively right neck rotation and her extremities are flexed on that side.

Who thinks of these things? Certainly not folks that are paying attention to appropriate neurology and physiology!  Oh yeah, and the ad was for massage cream. Jeez…

A new twist on an old exercise

Do you know the the “Bird Dog” exercise? It looks like the picture above. The upper and contralateral lower extremities are extended, the the opposite ones are flexed. Seems to make make sense, unless you think about gait and neurology (yes, as you can see, those things seem to always be intertwined).

Think about gait. Your right leg and left arm flex until about midstance, when they start to extend; the left leg and right arm are doing the opposite. At no point are the arm and opposite leg opposing one another. Hmmm.

If you look at it neurologically, it is a crossed extensor reflex (see above); again, flexion of the lower extremity is paired with flexion of the opposite upper extremity. It is very similar to a protective reflex called the “flexor reflex” or “flexor reflex afferent”.

Wouldn’t it make more sense to do a cross crawl pattern? Or maybe like the babies shown above? Seems like if that’s the way the system was programmed, maybe we should try and emulate that. Don’t we want to send the appropriate messages to our nervous system for neurological re patterning? If you are doing the classic “opposite” pattern, what is your reasoning? Can you provide a sound neurological or physiological reason?

Think before you act. Know what you are doing.

The Gait Guys. Bridging the gap between neurology and gait, so you can do a better job.

The Power of Facilitation: How to supercharge your run.

While running intervals this crisp, cool 19 degree morning, something dawned on me. My left knee was hurting from some patellar tracking issues, but only on initial contact and toe off. I generally run with a midfoot strike. I began concentrating on my feet, lifted and spread my toes and voila! my knee pain instantly improved. Very cool, and that is why I am writing this today. 

Without getting bogged down in the mire of quad/hamstring facilitation patterns, lets look at what happened.

I contracted the long extensors of the toes: the extensor digitorum longus and the extensor hallicus longus; the short extensors of my toes: the extensor digitorum brevis, the extensor hallucis brevis: as well as the dorsal interossei.the peroneus longus, brevis and tertius were probably involved as well.

Do you note a central theme here? They are all extensors. So what, you say. Hmmm… 

Lets think about this from a neurological perspective:

In the nervous system, we have 2 principles called convergence and divergence. Convergence is when many neurons synapse on one (or a group of fewer) neuron(s). It takes information and “simplifies” it, making information processing easier or more streamlined. Divergence is the opposite, where one(or a few) neurons synapse on a larger group. It takes information and makes it more complicated, or offers it more options.

In the spinal cord, motor neurons are arranged in sections or “pools” as we like to call them in the gray matter of the cord. These pools receive afferent information  and perform segmental processing (all the info coming in at that spinal cord segment) before the information travels up to higher centers (like the cerebellum and cortex). One of these pools fires the extensor muscles and another fires the flexor muscles.. 

If someone in the movie theater keeps kicking the back of our seat, after a while, you will say (or do) something to try and get them to stop. You have reached the threshold of your patience. Neurons also have a threshold for firing.  If they don’t reach threshold, they don’t fire; to them it is black and white. Stimuli applied to the neuron either takes them closer to or farther from threshold.  When a stimulus takes them closer to firing, we say they are “facilitating” the neuron. If it affects a “pool” of neurons, then that neuronal pool is facilitated. If that pool of neurons happens to fire extensor muscles, then that “extensor pool” is facilitated.

When I consciously fired my extensor muscles, two things happened: 1. Through divergence, I sent information from my brain (fewer neurons in the cortico spinal pathway) to the motor neuron pools of my extensor muscles (larger groups of motor neurons) facilitating them and bringing them closer to threshold for firing and 2. When my extensor muscles fired, they sent that information (via muscle spindles, golgi tendon organs, joint mechnoreceptors, etc) back to my cerebellum, brain stem and cortex (convergence) to monitor and modulate the response.

When I fired my extensor muscles, I facilitated ALL the neuronal pools of ALL the extensors of the foot and lower kinetic chain. This was enough to create balance between my flexors and extensors and normalize my knee mechanics.

If you have followed us for any amount of time, you know that it is often “all about the extensors” and this post exemplifies that fact.

 Next time you are running, have a consciousness of your extensors. Think about lifting and spreading our toes, or consciously not clenching them. Attempt to dorsiflex your ankles and engage your glutes. It just may make your knees feel better!

The Gait Guys. Facilitating your neuronal pools with each and every post.

All material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved. If you rip off our stuff, we will send Lee after you!