Arm swing asymmetry: It can be a huge window of education into your client.

Arm swing asymmetry: It can be a huge window of education into your client, if you can get past the dumb stuff we’ve all done (and believed) for decades.
I have beaten you down with arm swing principles over the past few years, sorry about that, but, the beating will continue because it is important to know what arm swing tells you, and what it does not tell you (hint hint for all those improperly coaching arm swing changes). We did an entire tele seminar on the Stage 1 principles of of arm swing (#218) on and if you wish to take that archived lecture. Heck $19, how can you lose (see photo).  Arm swing is intimately dependent upon scapular stability, thoracic mobility, breathing, cervical spine function, pelvis stability and clearly ipsilateral and contralateral leg swing not to forget to mention spinal stability. The first signs of spine pain or instability and the counter rotation of the shoulder and pelvic girdles become more phasic, instead of their normal anti phasic nature (moving in opposite directions). This phasic nature reduces spinal shear loads.

Neurologic diseases in their early, middle and late phases can give us a clearer window into how the nervous system is tied together.
Arm swing asymmetry during gait may be a sensitive sign for early Parkinson’s disease.

Here is what this Plate et al study found :
-Arm swing amplitude as well as arm swing asymmetry varied considerably in the healthy subjects.
-Elderly subjects swung their arms more than younger participants. -Only the more demanding mental load caused a significant asymmetry
-In the patient group, asymmetry was considerably higher and even more enhanced by mental loads.
-Evaluation of arm swing asymmetry may be used as part of a test battery for early Parkinson’s disease.

Some facts you should consider:
Parkinson’s Disease will be well advanced before the first signs of motor compromise occurs. So early detection and suspicion should be acted upon early when possible. Reductions or changes in arm swing may be the first signs of neuralgic disease expression and progression. Dual tasking may bring out neurologic signs early, so talk to your clients or have them count backwards to distract the motor programs. Look for one sided arm swing impairment, and when present, be sure to examine all limbs, especially the lower limbs, for impaired function. After all, the arms are like balasts, they can help with postural stability simply by abducting or modifying their swing.  Arm swing changes can include:
– crossing over the body
– more forward sagittal swing and less posterior swing
– more posterior sagittal swing and less anterior swing
– shoulder abduction during swing (and with attributes of the prior two mentioned above)
– less swing with adduction stabilized with torso
– modified through accentuations or dampening of shoulder girdle rotation oscillations, thus less arm swing but more torso swing to protect the glenohumeral and other joints
– and others of course

Arm swing and arm swing symmetry matter. Don’t be a dunce and just train it out or tell your client to do things to change it before you identify the “why” behind it. If it were that simple Ivo and I would have long grown tails and begun eating more bananas. Or maybe we would have already moved to the islands by now. That was random wasn’t it. That’s what Jimmy Buffett said.

“Now he lives in the islands, fishes the pilin’s
And drinks his green label each day
He’s writing his memoirs and losing his hearing
But he don’t care what most people say.
Through eighty-six years of perpetual motion
If he likes you he’ll smile then he’ll say
Jimmy, some of it’s magic, some of it’s tragic
But I had a good life all the way.
And he went to Paris looking for answers
To questions that bother him so.”  -Jimmy Buffett

Hope this helps, now back to that rum.
-Shawn Allen

Gait Posture. 2015 Jan;41(1):13-8. doi: 10.1016/j.gaitpost.2014.07.011. Epub 2014 Aug 8.
Normative data for arm swing asymmetry: how (a)symmetrical are we?  Plate A1, Sedunko D2, Pelykh O3, Schlick C4, Ilmberger JR5, Bötzel K6.

Global body compensations in ACL deficient knees.

ALERT: Ok, this is big.
It is a huge comment on what the brain and reflexive patterns impart on posture and gait when perceived functional instability is present.
This study aimed to investigate the gait modification strategies of trunk over right stance phase in patients with right anterior cruciate ligament deficiency.
* Here is what you need to ABSOLUTLY keep in mind when you read it. The 3D capture it telling you what they are DOING to strategize, not what is WRONG or what needs CORRECTING (our mantra it seems, sorry to keep beating this concept to death). This again hits home what I have been preaching for quite some time, that arm swing (and you can translate that to trunk movements, thorax, head posture, breathing etc) should not be coached or corrected unless you are absolutely sure there are clean symmetrical lower limb biomechanics (yes, you can easily and correctly argue that you can concurrently work on all parts). IF there is something going awry in a lower limb, compensations will occur above, they have to occur. So be absolutely sure you are not making therapeutic interventions above without making therapeutic corrections below. If you are working on a shoulder/upper quarter problem and are not looking for drivers in the lower limbs or in gait, well … . . good luck making lasting effects. Other than breathing, it can be argued well that gait locomotion is our 2nd most engaged motor pattern that we have driven to subconscious levels , and compensations are abound (but not without a cost), so we can dual++ task.
If you want to dive deeper into this, search our blog and look for my articles on Anti-phasic gait. This is essentially what this study was looking at, and confirming, that there is a distortion in the NORMAL opposite phase movements (anti-phasic) of the “shoulder girdle” and “pelvic girdle” when something goes wrong in a lower limb.
– Dr. Allen

Findings from Shi et al when there was a chronic right ACL deficiency:
-trunk rotation with right shoulder trailing over the right stance phase was lower in all five motion patterns
– trunk posterior lean was higher from descending stairs to walking when the knee sagittal plane moment ended
– trunk lateral flexion to the left was higher when ascending stairs at the start of right knee coronal plane moment when descending stairs at the maximal knee coronal plane moment and when descending stairs at the end of the knee coronal plane moment
– trunk rotation with right shoulder forward was higher at the minimal knee transverse plane moment and when the knee transverse plane moment ended
– during walking, trunk rotation with right shoulder trailing was lower at other knee moments during other walking patterns

Kinetic chain transfer.

Anyone would be silly to disagree with this.
We go into some deeper reasoning back in this older blog post ( looking at arm swing and leg swing and pairing of pelvis and shoulder posturing and how clean pelvis function parlays into upper body function in softball pitching.

“Proper utilization of the kinetic chain allows for efficient kinetic energy transfer from the proximal segments to the distal segments. Dysfunction at a proximal segment may lead to altered energy transfer and dysfunction at more distal segments,”

Lower body conditioning may cut upper body injury risk in softball. -Hank Black

Training out a crossover gait?

This gal came to see us with right-sided hamstring insertional pain. During gait analysis we noted that she has a crossover gait as seen in the first two sections of this video. In addition to making other changes both biomechanically (manipulation, gluteus medius exercises) and in her running style (“Rounding out her gait” and making her gait more “circular”, running with less impact on foot strike, extending her toes slightly in her shoes) she was told to run with her arms at her sides rather than across her body. You can see the results and the third part of this.

Because of her bilateral gluteus medius weakness that is seen with the dipping and lateral shift of the pelvis on the footstrike side, she moves her arms across her body to move her center of gravity over her feet.

Yes, there is much more work that needs to be done. This is one simple step in the entire process.

Arm and leg swing gait quiz. Today I combine concepts from my previous quizes ! This one may really put you to the test. 

Two women walking on a sloped beach. They are arm in arm.

Take the principles I have taught you on slope walking, functional leg length differentials to level the pelvis, and arm swing to answer the question.

Here is the question: Are these two more likely to walk “in phase or out of phase”? 

* Do not mistaken the question for anti-phasic or phasic. These are two different concepts. If you are out of the loop on these 4 terms, just search the blog for them. Then come back here to answer this brain thumper.

Make for your case in your head and then scroll down to hear my reasoning for my answer.

This is an EXTREMELY difficult mind bender of a question. You will need to understand the concepts of 2 prior blog posts to even get to the starting line of the solution.  These are the questions I will often pose to myself so that I force the mental gymnastics of gait biomechanics, and quicken my “gait mind” so that I can leave room for processing unique factors in someone’s individual gait. If you have to take time to process the basics, you are gonna run out of time during a consultation and your client will notice you scratching your head. This is a maturation process, you must put in the work that Ivo and I have, if you want to solve the really tough cases. Simple cases are a break, a vacation if you will, they are welcome during a clinic day, but it is the tough cases that make you stretch that truly fulfill your day.  When you are in the clinic, you have to think fast, efficiently and effectively. Recently I had a powerlifter drive from out of state to see me. His case problems were unresolved for many years.  The treating clinician was on the right page, doing a great job actually, but there were so many issues going on that it was hard to see the root of the problem so the case was just being more “managed” than solved. His case was much like this one, all of the findings and factors were related but because I had seen this hodge podge of complaints before (right foot, right knee, left hip, low back, pelvis distortion and a classic Olympic lift compensation fail) so I knew quickly how to piece it all together into a logical solution and find the single spot to focus the therapy, at the root of the problem. My point is that I had done the hard “head scratching” work long ago, so I readily was able to dismiss the distractors and recognize this beast for what it was.  

Back to the two ladies beach walking, I am basing things on a simple assumption that on most beaches the slope gently levels out at the water line, and that the sand several feet up the beach from the water is on a steeper incline, simple tide erosion principles.  Thus, the woman higher up on the beach will be on a steeper slope, this means more beach side leg knee flexion which means less hip extension, meaning a shorter right step length.  This will impair left arm swing, likely shortening it. Less right hip extension will be met by less left arm extension (posterior arm swing behind the body). This often leads to left arm cross over, arm adduction. 

Here is where things get squirrelly. The lady lower on the beach is on a slightly more gentle slope but her issues are the same just muted slightly. So her right beach side leg is in less flexion at the knee and hip, so hip extension is greater and step length will be longer (relative to her friend higher up on the beach). However, she (ocean side lady) is being led by the impaired arm swing, as discussed above, of the lady on the beach side.  That is, if in fact she is being led or if she is the leader. Oy ! There is the brain bender !  

One must consider who is the more corrupting force. In this case, the more corrupting forces will likely trump out the cleaner forces. The ocean side lady is clearly going to have a “more normal” gait with more normal arm and leg swing and step lengths, quite simply the slope she must negotiate is less so there is less corrupting forces on her. The lady on the beach side is having to accomodate more to her greater slope. The lady up the beach is working harder to keep her pelvis level, her eyes and vestiular apparati on the horizon, her differing step lengths from pulling her off from a straight line course, to keep her from falling over (the steeper the slope, the greater the balance challenge to fight from falling into the beach or falling down the slope. Laws of physics say that things roll down hill, so she is fighting this battle while trying to walk a straight line down a sloped beach, with a friends arm in tow).

So, with all that said, one could logically assume that the gal up the beach is definitely working harder, she has greater differing arm and leg swings from side to side, different step lengths, greater struggles with staying up on the slope when gravity wants her to move down the slope, she has more left arm flexion and adduction to help pair with the struggling and perpetual right hip flexion (and loss of right hip extension), she will have to demonstrate more spinal stiffness to deal with these limb girdle torsional differences side to side and a host of other issues I have outlined in these prior “beach walking” quiz posts. Clearly beach side lady is working harder. Thus, just to maintain her gait posturing up on the slope, she will have to dominate the gait. If she gives in to the signals of her ocean side gal, she will have to soften her slope work strategies and she will move down the slope to easier ground. 

Now, back to the question: Are these two more likely to walk “in phase or out of phase”? 

Who truly knows is the answer ! However, we know beach lady is working harder and must continue to do so to stay up on the slope, so her left arm will remain dominant and the ocean side gal will have to accommodate to a very jerky yet cyclically synchronous gait. To walk linked together they will have to find some rhythm. Walking slower will be easier for them to find a harmoniously rhythm. However, one could make the case that “out of phase” gait will be easier (mental image to help you, if they tie ocean side lady’s right ankle to beach side ladies left ankle you will create “out of phase” gait. Thus, the ocean side lady will not mirror her beach side friend. Thus, when beach lady has right leg in extension, ocean side lady will have her left leg in extension. Why? Well, the left arm swing , their point of union, is the trouble zone. With beach side lady having the left arm in more flexion and adduction, the ocean side lady has to accommodate and meet that troubling arm swing. This means her right leg will be in extension at the same time beach side lady has her left leg in extension. This will be more accommodative work for ocean side lady, but she will just have to go with it. Failure to do so will pull her friend down off the beach and making life harder for her friend.

So there you have it. The person up the slope is working harder to stay here, the person down the slope is working harder to accommodate to a gait that their  lower slope is not requiring. Thus, they are both working hard, but for different reasons. But the winner, the dictator, is the one with the greater slope risk. And thus, she will dictate an “out of phase” gait of her ocean side partner, if they are to still walk embraced. 

How did you do ? Can you make a case for “in phase” as the solution ? I can, but I think that “out of phase” is more likely, for the above reasons.

Thanks for playing  this tough one. Congratulations to you if you followed things smoothly. IF you did not, go back and play the mental game again, I think these are important fundamentals everyone should have if you are doing gait work.

Dr. Shawn Allen

Do you have enough in the anterior tank ? Dr. Allen’s quiz question and lesson of the week.

One of my favorite sayings to my clients, “Do you have enough anterior strength to achieve and maintain posterior length?”  

Translation, do you have enough anterior lower leg compartment strength (tibialis anterior, long toe extensor muscle group, peroneus tertius) to achieve sufficient ankle dorsiflexion in order to achieve posterior compartment length (gastric, soleus, tibialis posterior, long toe flexor muscle) ?  You see, you can either regularly stretch the calf-achilles complex or you can achieve great anterior compartment strength, to drive sufficient ankle dorsiflexion, in effect EARNING the posterior compartment length. This is a grounded principle in our offices. It is the premise of the Shuffle Walk exercise (link) and many others we implement in restoring someones biomechanics.

Now on to today’s quiz question.

In this photo, both people are just mere moments before heel strike. 

1. Who is gonna need to have more eccentric strength in the anterior compartment ? And what if they don’t have it ? Repercussions ?  

2. Who is toeing off the lateral forefoot ? 

3. Who is crossing over more and thus could have more gluteus medius weakness ?

A picture is worth a thousand words. Answers and dialogue below.







1. The lady in the high heeled shoes. If she heel strikes first, the larger longer heel on her shoe will mean she will need more of a prolonged eccentric loading of the anterior compartment to lower the forefoot to the ground. I hope she shortens her strike so she can get close to mid foot strike, it will negate most of this issue.  Repercussions? Forefoot pain, clenching/hammering of her toes from use of the long flexors to dampen loading of the metatarsal heads, and even possibly anterior shin splint like pain.

2. The lady is clearly in more lateral toe off, this is from the intoe’ing we see. This is low gear toe off. She may have limb torsion, internal tibial torsion to be specific, or insufficent external hip rotation control as a possibility. There are several possibilities here.

3. Hard to say, but the man seems to be crossing over more.

There is also no arm swing, hands are in the pockets, this is a big hit to gait economy. We have discussed these numbers in previous blog posts, the numbers are significant and real.  Step width is also a real factor, reduced step width leads to joint stacking challenges and is found with weaker hip abductors and changes in the iliotibial band length.

A picture can be worth a thousand words. I am a few short of the mark today, but I wanted to keep it short.

Dr. Shawn Allen, one of the gait guys

Dr. Allen’s Quiz question of the week. See if you can get this one.

Reference point is the Girl in the middle, big sister. Choose all that apply. Note: there is something deeper than the obvious going on here, it doesn’t make sense. Can you see it ? 

a. she (big sister) is out of phase with her little sister 

b. she is in phase with her little sister

c. she is out of phase with her little brother

d. she is in phase with her little brother

e.  A and C

f.  B and C

g. B and D

h. A and D

i. AC~DC rules

Yes, Answer  “i” is always right.

otherwise the answer is … . scroll down









F. she is in phase with her sister to her left and out of phase with her brother (at least if you are referencing her leg swing).  With her little sister, left feet are both forward in swing at the same time.

However, there is something deeper and requires some true critical thinking. IF you got the answer correct, congratulations. IF you did not, type in “in phase gait” or “arm swing” into the blog search engine and you will be able to read more about “in phase” and “out of phase” gaits.  

Now, look at the picture again. If she is “in phase” with her little sister to the left big sister should technically have her left arm in anterior/forward swing to meet little sister’s right arm swing. But, big sister’s left foot is forward, which technically means her left arm swing should be posterior to match her normal Anti-phasic gait.  But this does not pair with little sister. Can you see that this is a conflict in synchrony ? 

In phase and phasic are not the same thing, nor are out of phase and anti-phasic. Search our blog for these differences.  

Obviously you should glean by now that “In and out of phase” gait refers to the leg swing. Whereas, phasic and anti phasic gait refers to the synchrony of the upper and lower limbs in an individual.  The lower limb spinal cord motor neuron pools are more dominant than the upper arm pools (except in climbing, which is why I spent so much time last week talking about climbing and crawling here on the blog). Thus the lower legs often run the protocols and thus why arm swing changes should not be primarily or initially coached or amended in an athlete, they are very adaptive and accommodating.  The legs need to run the show, we need our arms free to be able to carry things while walking or running (water bottle, babies, spears, rifle, brief case etc) without disrupting the normal leg swing gait mechanics.  

Big sister is “out of phase” with her brother when it comes to the legs, but their arm swings are matching in phase so that there is no conflict. When people walk “out of phase” their arm swings will always match. Thus, it would seem that this is the more harmonious way to walk with a partner. 

So how are they all walking together ? Certainly not in harmony.

Obviously the little sister is not in sync with big sister. She is much shorter, and thus her step length is going to be different and that is the likely answer. She will have to pick up cadence to keep up and that will mean much of the time she will not synchronize with her big sister. As I mentioned in a prior post on these topics, often the larger or more dominant person’s arm swing will dictate the arm swing pattern of the other partner, and this will in turn, dictate how the lower limbs synchronize to the dominant partner. It would make sense that perfect harmony would bring about “out of phase” leg swing, but it does not always occur. Why? There are many reasons I discussed here today, things like differing arm and leg lengths and step lengths come to mind.

* There is one more option, none of them are in anti-phasic gait. Maybe they all have back pain 🙂 Back pain patients tend to shift towards phasic gait to reduce spinal torsion and shear. If they all are anti-phasic then arm and leg swing matter very little in terms of full limb swing propulsive gait. This is quite possible as well, perhaps this is just a still photo representing a very slow strolling gait and thus little need for anti phasic gaits from all 3 of them. 

Neat points if you are a true gait nerd. Did you catch it ? A picture is worth a thousand words.

Hope this little quiz helped you to put some pieces together.

One more thing, here is a clinical pearl. By walking hand in hand with someone, you can help a person learn arm swing and leg swing and how to create a clean cadence, the normal anti-phasic gait, and learn how to dual task as well as add audible, visual and tactile queues to one’s gait. It is a great tool for helping neurologic gait pathologies, post stroke gait training and helping someone who has joint replacements or back pain regain normal anti-phasic gait traits where gait has become phasic and apropulsive. 

Dr. Shawn Allen