Achilles Tendonitis/Tendinopathy and Needling

Achilles pain. You can’t live with it and you can’t live with it. Can needling help? The obvious answer is yes, but there is more as well.

There appears to be sufficient data to support the use of needling for achilles tendon problems . Perhaps it is the “reorganization” of collagen that makes it effective or a blood flow/vascularization phenomenon. The mechanism probably has something to do with pain and the reticular formation sending information down the cord via the lateral cell column (intermediolateral cell nucleus) or pain (nociceptive) afferents sending a collateral in the spinal cord to the dysfunctional muscle, affecting the alpha receptors and causing vasodilation. 

Loss of ankle dorsiflexion is a common factor that seems to contribute to achilles tendinopathies . It would seem that improving ankle rocker would be most helpful. In at least one study, needling restored ankle function and in another it improved strength. 

And don’t forget to go north of the lower leg/foot/ankle complex. The gluteus medius can many times the culprit as well. During running, the gluteus medius usually fires before heel strike, most likely to stabilize the hip and the pelvis. In runners with Achilles Tendonitis, its firing is delayed which may affect the kinematics of knee and ankle resulting in rear foot inversion. Perhaps the delayed action of the gluteus medius allows an adductory moment of the pelvis, moving the center of gravity medially. This could conceivably place additional stress on the achilles tendon (via the lateral gastroc) to create more eversion of the foot from midstance onward.

Similarly, in runners with achilles tendoinopathy, the gluteus maximus does not fire as long and activation is delayed. The glute max should be the primary hip extensor and decreased hip extension might be compensated by an increased ankle plantarflexion which could potentially increase the load on the Achilles tendon. 

So, in short, yes, needling will probably help, for these reasons and probably many more. Make sure to needle all the dysfunctional muscles up the chain, beginning at the foot and moving rostrally.

Effectiveness of Acupuncture Therapies to Manage Musculoskeletal Disorders of the Extremities: A Systematic Review. Cox J, Varatharajan S, Côté P, Optima Collaboration. J Orthop Sports Phys Ther. 2016 Jun;46(6):409-29. doi: 10.2519/jospt.2016.6270. Epub 2016 Apr 26

Acupuncture’s role in tendinopathy: new possibilities. Speed C. Acupunct Med. 2015 Feb;33(1):7-8. doi: 10.1136/acupmed-2014-010746. Epub 2015 Jan 9.

The effect of electroacupuncture on tendon repair in a rat Achilles tendon rupture model.  Inoue M, Nakajima M, Oi Y, Hojo T, Itoi M, Kitakoji H. Acupunct Med. 2015 Feb;33(1):58-64. doi: 10.1136/acupmed-2014-010611. Epub 2014 Oct 21.

KIishmishian B, Selfe J, Richards J A Historical Review of Acupuncture to the Achilles Tendon and the development of a standardized protocol for its use Journal of the Acupuncture Association of Chartered Physiotherpists Spring 2012,  69-78

Acupuncture for chronic Achilles tendnopathy: a randomized controlled study. Zhang BM1, Zhong LW, Xu SW, Jiang HR, Shen J. Chin J Integr Med. 2013 Dec;19(12):900-4. doi: 10.1007/s11655-012-1218-4. Epub 2012 Dec 21.

The effect of dry needling and treadmill running on inducing pathological changes in rat Achilles tendon. Kim BS, Joo YC, Choi BH, Kim KH, Kang JS, Park SR. Connect Tissue Res. 2015 Nov;56(6):452-60. doi: 10.3109/03008207.2015.1052876. Epub 2015 Jul 29.

Tendon needling for treatment of tendinopathy: A systematic review.
Krey D, Borchers J, McCamey K. Phys Sportsmed. 2015 Feb;43(1):80-6. doi: 10.1080/00913847.2015.1004296. Epub 2015 Jan 22. Review.

Acupuncture increases the diameter and reorganisation of collagen fibrils during rat tendonhealing.
de Almeida Mdos S, de Freitas KM, Oliveira LP, Vieira CP, Guerra Fda R, Dolder MA, Pimentel ER. Acupunct Med. 2015 Feb;33(1):51-7. doi: 10.1136/acupmed-2014-010548. Epub 2014 Aug 19.

Electroacupuncture increases the concentration and organization of collagen in a tendon healing model in rats.
de Almeida Mdos S, de Aro AA, Guerra Fda R, Vieira CP, de Campos Vidal B, Rosa Pimentel E. Connect Tissue Res. 2012;53(6):542-7. doi: 10.3109/03008207.2012.710671. Epub 2012 Aug 14.

Changes in blood circulation of the contralateral Achilles tendon during and after acupunctureand heating.Kubo K, Yajima H, Takayama M, Ikebukuro T, Mizoguchi H, Takakura N. Int J Sports Med. 2011 Oct;32(10):807-13. doi: 10.1055/s-0031-1277213. Epub 2011 May 26.

Microcirculatory effects of acupuncture and hyperthermia on Achilles tendon microcirculation. Kraemer R, Vogt PM, Knobloch K.
Eur J Appl Physiol. 2010 Jul;109(5):1007-8. doi: 10.1007/s00421-010-1442-6. Epub 2010 Mar 28.

Effects of acupuncture and heating on blood volume and oxygen saturation of human Achilles tendon in vivo. Kubo K, Yajima H, Takayama M, Ikebukuro T, Mizoguchi H, Takakura N. Eur J Appl Physiol. 2010 Jun;109(3):545-50. doi: 10.1007/s00421-010-1368-z. Epub 2010 Feb 6.

 Insertional achilles tendinopathy associated with altered transverse compressive and axial tensile strain during ankle dorsiflexion. Chimenti RL, Bucklin M, Kelly M, Ketz J, Flemister AS, Richards MS, Buckley MR.
J Orthop Res. 2016 Jun 16. doi: 10.1002/jor.23338. [Epub ahead of print]

Forefoot and rearfoot contributions to the lunge position in individuals with and without insertionalAchilles tendinopathy. Chimenti RL, Forenza A, Previte E, Tome J, Nawoczenski DA.Clin Biomech (Bristol, Avon). 2016 Jul;36:40-5. doi: 10.1016/j.clinbiomech.2016.05.007. Epub 2016 May 11.

Ankle Power and Endurance Outcomes Following Isolated Gastrocnemius Recession for AchillesTendinopathy. Nawoczenski DA, DiLiberto FE, Cantor MS, Tome JM, DiGiovanni BF. Foot Ankle Int. 2016 Mar 17. pii: 1071100716638128. [Epub ahead of print]

 In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis.
Helfenstein-Didier C, Andrade RJ, Brum J, Hug F, Tanter M, Nordez A, Gennisson JL. Phys Med Biol. 2016 Mar 21;61(6):2485-96. doi: 10.1088/0031-9155/61/6/2485. Epub 2016 Mar 7.

Changes of gait parameters and lower limb dynamics in recreational runners with achillestendinopathy. Kim S, Yu J. J Sports Sci Med. 2015 May 8;14(2):284-9. eCollection 2015 Jun.

Gastrocnemius recession for foot and ankle conditions in adults: Evidence-based recommendations. Cychosz CC, Phisitkul P, Belatti DA, Glazebrook MA, DiGiovanni CW. Foot Ankle Surg. 2015 Jun;21(2):77-85. doi: 10.1016/j.fas.2015.02.001. Epub 2015 Feb 26. Review.

Limited ankle dorsiflexion increases the risk for mid-portion Achilles tendinopathy in infantry recruits: a prospective cohort study. Rabin A, Kozol Z, Finestone AS. J Foot Ankle Res. 2014 Nov 18;7(1):48. doi: 10.1186/s13047-014-0048-3. eCollection 2014.

Perry J. Gait Analysis: Normal and Pathological Function. Thorofare, NJ: Slack 1992.

Chan YY, Mok KM, Yung PSh, Chan KM. Sports Med Arthrosc Rehabil Ther Technol. 2009 Jul 30;1:14. doi: 10.1186/1758-2555-1-14.

Bilateral effects of 6 weeks’ unilateral acupuncture and electroacupuncture on ankle dorsiflexors muscle strength: a pilot study. Zhou S, Huang LP, Liu J, Yu JH, Tian Q, Cao LJ. Arch Phys Med Rehabil. 2012 Jan;93(1):50-5. doi: 10.1016/j.apmr.2011.08.010. Epub 2011 Nov 8.

Franettovich Smith MM1, Honeywill C, Wyndow N, Crossley KM, Creaby MW. : Neuromotor control of gluteal muscles in runners with achilles tendinopathy.
Med Sci Sports Exerc. 2014 Mar;46(3):594-9.

and what have we been saying about loss of ankle rocker and achilles tendon problems for years now?

Here is a FREE, FULL TEXT article talking all about it

“A more limited ankle Dorsi Flexion ROM as measured in Non Weight Bearing with the knee bent increases the risk of developing Achilles Tendinopathy among military recruits taking part in intensive physical training.”

J Foot Ankle Res. 2014 Nov 18;7(1):48. doi: 10.1186/s13047-014-0048-3. eCollection 2014.Limited ankle dorsiflexion increases the risk for mid-portion Achilles tendinopathy in infantry recruits: a prospective cohort study.Rabin A1, Kozol Z, Finestone AS.

link to full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243387/

Wow!  Can you figure out why this person at the distal end of her first metatarsal under her medial sesamoid.

She recently underwent surgery for a broken fibula (distal with plate fixation) and microfracrure of the medial malleolus. You are looking at her full range of dorsiflexion which is improved from approximately 20° plantarflexion. She is now at just under 5°.

She has just begun weight-bearing and developed pain over the medial sesamoid.

The three rockers, depicted above from Thomas Michauds book, or necessary for normal gait.  This patient clearly has a loss of ankle rocker. Because of this loss her foot will cantilever forward and put pressure on the head of the first metatarsal.  This is resulting in excessive forefoot rocker.  Her other option would have been to pronate through the midfoot. Hers is relatively rigid so, as Dr. Allen likes to say, the “buck was passed to the next joint. ”

There needs to be harmony in the foot in that includes each rocker working independently and with in its normal range. Ankle rocker should be at least 10° with 15° been preferable and for footlocker at least 50° with 65 been preferable.

 If you need to know more about rockers, click here.

Sounds like a bad idea

Orthotics, can be useful adjunct to care. They can be used to give people biomechanics that they do not have while you were trying to improve them and help to make up for ranges of motion which do not seem attainable.

From the gate cycle we know that after initial contact and loading response the calcaneus should start to evert. The calcaneus will continue to evert until it encounters something (like the lateral heel counter of the shoe). At mid stance it should be fully everted and as the opposite leg comes in to swing, begin to invert. The lateral heel counter assists in the inversion/supination process.

To our knowledge, flip-flops, even if they have an increased arch, do not have a lateral heel counter and therefore will promote further lateral excursion of the calcaneus while the medial longitudinal arch is collapsing  (i.e.: midfoot pronation). Go ahead and place your foot into inversion and see what happens to your heel. It’s slides laterally.

It’s also well-established that flip-flops, through flexion of the distal toes and engagement of the long flexor tendons, inhibits ankle rocker. It is often necessary to engage these muscles to keep the flip-flop from coming off. Lack of ankle rocker usually will inhibit hip extension and that can cause a constellation of problems.

Though engagement of the long flexors of the toes will have a partial anti-pronatory effect, this is not enough to counter the excessive heel  eversion which is happening.

We generally do not think the flip-flops are a great idea and telling someone that it’s “OK” to wear flip-flops as long as it has appropriate arch support, is silly.

Do you know where your rocker is?

At 1st pass, some articles may seem like a sleeper, but there can be some great clinical pearls to be had. I recently ran across one of these. It was a presentation from the  42nd annual American Academy of Orthotists and Prosthetists meeting in Orlando, March 2016 entitled “ Shifting Position of Shoe Heel Rocker Affects Ankle Mechanics During Gait”. The title caught my eye.

They looked at ankle kinematics while keeping the toe portion of rocker constant at 63% of foot length, angled at 25 degrees and shifting the base of a rockered shoe from 1cm behind the medial malleolus, directly under it and 1cm anterior to it. Knee and hip kinematics did not differ significantly, however ankle range of motion did.

The more forward the ankle rocker, the less plantarflexion but more ankle dorsiflexion at midstance. So, the question begs, why do we care? Lets explore that further…

  • Think about the “average” heel rocker in a shoe. It largely has to do with the length of the heel and heel flare (base) of the shoe. The further back this is (ie; the more “flare”) the more plantar flexion at heel strike and less ankle dorsiflexion (and thus ankle rocker, as described HERE) you will see. Since loss of ankle dorsiflexion (ie: rocker) usually means a loss of hip extension (since these 2 things should be relatively equal during gait (see here), and that combination can be responsible for a whole host of problems that we talk about here on the blog all the time. Picking a shoe with a heel rocker based further forward (having less of a flare) would stand to promote more ankle dorsiflexion.
  • Having a shoe with a greater amount of “drop” from heel to toe (ie: ramp delta) is going to have the same effect. It will move the calcaneus forward with respect to the heel of the shoe and effectively move the rocker posteriorly.
  • Lastly, look a the shape of the outsole of the shoe. The toe drop is usually clear to see, but does it have a heel rocker (see the picture above)?

These are  a few examples of what to look for in a clients shoe when examining theirs or making a recommendation, depending on whether you are trying to improve or decrease ankle rocker. We can’t think of why you would want to decrease ankle rocker, but with conditions like rigid hallux limitus, where the person has limited or no dorsiflexion of the great toe, you may want to employ a rockered sole shoe. We would recommend one with the rocker set more forward.

This is apparently a growing thing, INTERVAL walking. Oy. We are not particular fans at this point, nothing exciting or earth shattering at this point (other than the concerns we hi light below) but we will look into it more.
What you need to see, and be aware of, is that this is what happens when you wear a shoe that has too soft a rear foot. At heel strike, instead of progressing forward into the mid and forefoot, the rear foot of the shoe deforms and forces you into more HEEL rocker, sustained heel rocker. If you stay in heel rocker too long, you won’t progress forward into ANKLE rocker (ankle dorsiflexion). This often causes knee hyperextension. If you have a good trained eye, you will see both of these things, prolonged heel rocker and never any ankle rocker/ankle dorsiflexion. IT is like the ankle in this video is frozen at 90 degrees the entire time, train your eye to see this absense of ankle rocker. This will cause premature heel rise and premature posterior compartment contraction which can cause premature forefoot loading. This is what happens when the heel of the shoe is too soft. A perfect example of “more cushion” is not always better. IT can be a liability as well. Remember the angry revolution over the MBT shoe and its mushy rear foot?. Same principle, same risks and concerns. Welcome to round two of the same old problems ????? Maybe. you decide. To be clear, this is a comment on the shoes being used, the technique is , well, perhaps interesting. That is all we are willing to comment on at this point until we look into it more. Look at the heel and ankle mechanics during the slow mo clips.
Sorry Ben Greenfield. We are not impressed, as of yet. We like your podcast Ben, you are doing us all a great service, but this one is promoting some potential problems that people need to know about.
Start with our “Shuffle Walk”. Google search it under the Gait Guys. That is a good start.

– Dr. Allen

“Is your client feeling better because they are truly fixed, or have your prescribed corrective exercises merely raised the capacity and durability of their compensation ?  Welcome to a global industry problem.”  -Dr. Allen

Which hip will have troubles extending ?

Remember this quiz question from 2 weeks ago ? I talked about how the body will compensate to level the pelvis (and eyes and vestibular apparatus).

Lets go further down the rabbit hole.  Here is your question of the week (you may have to go back and review the prior blog post if you are unsure of how the body will cope with the slope.  Here is that first blog post.

Question: Which hip will have troubles getting into hip extension and thus terminal glute-hip-pelvis stabilization ?

Answer:  scroll down (at least think about it for a second)

.

.

.

.

.

.

Answer:

The leg on the up slope of the beach, the non-water side leg will have to be in a modest degree of knee flexion to shorten and accommodate to the slope. A Flexed knee is not an extended one and it will be far more difficult to extend the hip and get into the glutes. Propulsion will also be compromised.  For you indoor small track runners this will happen to you on the inside leg on the curves of the track. This is why we see so many hamstring injuries during indoor track.  Think about it ! It is not just bad luck.  Go ahead, tally up  your teams history of hamstring injuries, you should find more on the left leg for track runners. It is simple applied biomechanics.   Also, imagine the altered demand on the quadriceps on that flexed knee (the right knee in the picture above, and the left knee in circle track runners). Furthermore, what is the likelihood that the right pelvis will deviate into an anterior tilted posture ? You bet ya, a greater tendency, and thus a possibly shortened quadriceps/hip flexor mechanism.  Do you think this could inhibit hip extension and gluteal function ? You bet ya.  Oh, and one more thing, if you are true gait nerd, you should have asked yourself one more question, what about ankle rocker ?  Yes, you will need more ankle rocker on the beach side foot (flexed knee side). When the knee flexes, there must be more ankle rocker for this to occur, if not, you may implode into some unwelcome arch collapse, because arch collapse offers more false ankle rocker. What a mess huh !   Now, do not be shocked EVER again when your client’s come back from a sunny beach vacation from walking the beaches for hours every day, and find themselves a stark raving mad mess.  It is not the salty ocean air or the tequila, it is the slope. One could make a case that walking up and down the beach should balance things out, but that is only if we are balanced and symmetrical when we start out. Gravity always wins.

One final rant. If you are offering “corrective exercises” to your clients, you had better know at least the basics of movement and biomechanics. And further more, you had better know how to examine for them, and that means hands on assessment of the body, not just looking at how your client moves through a battery of tests. If the prior blog post (here) and today’s blog post principles are not remedial principles of knowledge for you, offering corrective exercises without this knowledge and a physical exam to confirm your assumptions is fraught with disaster, or at least helping your client to build deeper compensations on their prior compensations. Is your client feeling better because they are truly fixed, or have your prescribed corrective exercises merely raised the capacity and durability of their compensation ?  This is the kind of stuff that keeps my new patient scheduling booked at 4-8 weeks out … . .  frustrated clients.

This is why we do not offer online consultations like some do. Because, we have not figured out how to obtain the third dimension needed in our gait and movement observation (thank you Oculus Rift, the future is near) but more so, we cannot take that information and put it together with our own physical examination to determine whether if what we are seeing is the actual problem, or a compensation. Here in lies the pot of gold.

Another clinical pearl from Dr. Allen