Welcome to Monday folks and news you can use! Have a patient with weak hip abductors? Here is another great closed chain gluteus medius/ Maximus/minimums exercise we utilize all the time called “"hip helicopters” Try it in yourself, then try it on your patients and clients, then teach others : )

Pod #100: Hill Running + Cortical Brain Changes in Injuries

Pod #100  Hill Running + Cortical Brain Brain Changes in Injuries, Plus leg length challenges, Sole vs Heel lifts, Varying your Running Surface, Frontal plane biomechanics, Baker Cyst and Popliteal Muscle problems and more !

Show Sponsors:  
topoathletic.com
rocktape.com

Other Gait Guys stuff

A. Podcast links:

direct download URL: http://traffic.libsyn.com/thegaitguys/pod_100f.mp3

permalink URL: http://thegaitguys.libsyn.com/podcast-100-hill-running-cortical-brain-brain-changes-in-injuries

B. iTunes link:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138
C. Gait Guys online /download store (National Shoe Fit Certification & more !)
http://store.payloadz.com/results/results.aspx?m=80204
D. other web based Gait Guys lectures:
Monthly lectures at : www.onlinece.com type in Dr. Waerlop or Dr. Allen, ”Biomechanics”

-Our Book: Pedographs and Gait Analysis and Clinical Case Studies
Electronic copies available here:

-Amazon/Kindle:
http://www.amazon.com/Pedographs-Gait-Analysis-Clinical-Studies-ebook/dp/B00AC18M3E

-Barnes and Noble / Nook Reader:
http://www.barnesandnoble.com/w/pedographs-and-gait-analysis-ivo-waerlop-and-shawn-allen/1112754833?ean=9781466953895

https://itunes.apple.com/us/book/pedographs-and-gait-analysis/id554516085?mt=11

-Hardcopy available from our publisher:
http://bookstore.trafford.com/Products/SKU-000155825/Pedographs-and-Gait-Analysis.aspx

Show Notes:

1 Cortical change in chronic low back pain

http://www.anatomy-physiotherapy.com/articles/other/nervous/1329-cortical-change-in-chronic-low-back-pain
-Chronic low back pain is characterised by a range of structural, functional and neurochemical changes within the brain. Functional changes in individuals with chronic low back pain are reflected in a cortical reorganization, altered cortical activity and altered cortical responsiveness.

2  Lifting weights can change the brain
http://www.techvibes.com/blog/lifting-weights-can-beneficially-change-structure-of-brain-2015-10-27

3  Importance of varying running surfaces
http://triathlon.competitor.com/2015/05/training/importance-varying-running-surfaces_100995

4  Emergence of postural patterns as a function of vision and translation frequency.
http://www.ncbi.nlm.nih.gov/pubmed/10322069
J Neurophysiol. 1999 May;81(5):2325-39.
Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs.     *The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.

5  Previous hamstring injury is associated with altered kinematics.
“Previously injured athletes demonstrated significantly reduced biceps femoris muscle activation ratios with respect to ipsilateral gluteus maximus, ipsilateral erector spinae, ipsilateral external oblique, and contralateral rectus femoris in the late swing phase. We also detected sagittal asymmetry in hip flexion, pelvic tilt, and medial rotation of the knee effectively putting the hamstrings in a lengthened position just before heel strike.”

The biomechanics of running in athletes with previous hamstring injury: A case-control study. C. Daly1, U. McCarthy Persson2, R. Twycross-Lewis1, R. C. Woledge1,† andD. Morrissey1,

Have a patient with weak hip abductors? Here is a great closed chain gluteus medius exercise called “"hip airplanes” we utilize all the time. Try it in yourself, then try it on your patients and clients, then teach others : )

Starting and stopping your gait. How we do it gracefully.

Can you imagine being unable to stop moving graciously? Imagine that every attempt to halt your walking or running was like smacking into a wall or stumbling to a halt ? Kind of like that amateur driver who uses no grace or finesse, every start is a stomp on the gas and every stop is a slamming on the brakes.  Or can you imaging suffering from FOG (freezing of gait) as in some Parkinson’s patients ?  
When we are healthy, we take locomotion for granted. When we are in pain, movement can become labored and challenging; when we have a neurologic disease to the locomotor centers, we can find it almost impossible.  On occasion, it can be the seemingly simplest of things that can cause the greatest of difficulties, for example, we take stopping for granted and we underestimate the complexity of initiating movement. It is one of those things in life, you do not know what you have until you lose it.  When was the last time you even thought about starting or stopping your movements ? It is so natural that the thought doesn’t even reach the surface of our conscious thought.  When was the last time you walked towards your kitchen sink to wash the dishes and you consciously thought, 

“ok, we are about 3 more steps from the sink, you had better slow down … . ok, 2 more steps … 1 more step, this is the last one … .  ok, that is it, you have arrived at the sink, both feet stop moving … . . initiate double stance support, 50% weight on both feet… . .  begin standing mode.”

There is a brainstem pathway specifically dedicated to control locomotor arrest. Activating this pathway stops locomotion, while inhibiting the pathway enables locomotion.

In the study below, researchers Julien Bouvier and Vittorio Caggiano together with Professor Ole Kiehn and colleagues studied how the complex brainstem neuronal circuits control locomotion in mice.  What they found was this, 

Neuronal populations in the Reticular Formation of the brain “constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of these neurons (V2a) of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a “stop neurons” represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.”-Bouvier et al.

Human locomotion is an extremely complex task. It is one that requires all sensory and motor pathways to be intact and reflexive controls such as central pattern generators to function properly.  Gait is a complex task that requires synchrony, rhythmicity, balance, coordination, endurance and strength to name a few.  Initiating gait is highly complex, as is arresting one’s gait.  We take for granted how complex these task are at coordinating muscles, joints, limbs, vision, proprioception, vestibular inputs and many other components not to forget the cerebral connection bring it all together to get us from one place to the next is a safe fashion. It is only when things go wrong that we realize how fragile, and how complex, the system truly is.  Don’t believe us ?  Well then, try to over ride the system next time you are coming to a curb at the corner of the busiest street in your town.  Try to over ride the coordinated stop mechanism that enables you to suddenly stop perched on the curb, observing oncoming traffic, standing safely without falling into the lane.

Shawn Allen, one of The Gait Guys

“Descending command neurons in the brainstem that halt locomotion” by Julien Bouvier, Vittorio Caggiano, Roberto Leiras, Vanessa Caldeira, Carmelo Bellardita, Kira Balueva, Andrea Fuchs, and Ole Kiehn in Cell. Published online November 19 2015 doi:10.1016/j.cell.2015.10.074

This brief blog post was inspired from this article on the same topic. http://neurosciencenews.com/v2a-neurons-locomotion-neuroscience-3119/

Achilles tendonitis: Lift the heel, right? It does not appear so.

There was a recent article in one of our favorite journals, Lower Extremity Review which reviewed and expanded upon another study from Medicine and Science in Sports and Exercise titled “Running shoes increase achilles tendon load in walking: an acoustic propagation study.” We discussed some perspectives of this topic in one of our recent podcasts.
The article discusses a new technique (1,2) for looking at tensile loads in the achilles and looks at 12 symptom free individuals on a treadmill barefoot and in a shoe with a 10 mm drop (heel is 10mm higher than the forefoot) and found:

“Footwear resulted in a significant increase in step length, stance duration, and peak vertical ground reaction force compared with barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes.”(1)

According to LER: “The researchers also found changes in basic gait parameters associated with walking in running shoes versus barefoot, which the author Wearing said may help explain the increased tendon load with shoes. Shoes increased mean ankle plantar flexion by 4° during quiet stance as measured by electrogoniometry. When walking with shoes, participants adopted a lower step frequency but greater step length, period of double support, peak vertical ground reaction force, and loading rate than when walking barefoot. The researchers also noted that participants’ stance phase was relatively longer (4%) during shod walking than during barefoot walking.” (3)

Of course, our big question is why?

Why would an increase in step length result in increased tension?

Perhaps, as the force that the heel would hit the ground would be increased because of a longer acceleration time (F=ma), and it so happens this is what they found. The friction of the heel striking the ground would accelerate anterior translation of the talus, which plantar flexes, everts and abducts, accelerating pronation. The medial gastroc would be called into play to slow calcaneal eversion and this would indeed increase achilles tension.

Or perhaps it’s the fact that

the foot will strike in slight greater plantarflexion

(at least 4 degrees according to the study) and this results in an immediate greater load to the Achilles tendon.  Go ahead and try this while walking even if you’re barefoot. Walk across the floor and strike more on your forefoot. You will notice that you have an increased load in the tricep surae group.

Does this slight plantarflexion of the ankle contribute to greater eccentric load during stance phase?

This would certainly activate 1a afferent muscle spindles which would increase tensile stresses in the achilles tendon.

This seems to fly directly in the face of the findings of Sinclair (4) who investigated knee and ankle loading in barefoot and barefoot inspired footwear and found increased achilles loading in both compared to “conventional shoes”.

Of course this also begs the question of what type of shoes were they wearing? High top or low top shoes and were the shoes tied or not? High top shoes seem to reduce Achilles tension more so than low top shoes, especially if they are tied (5).

Whatever the reason, this questions the use of putting a lift or a higher heeled shoe underneath the foot of people that have Achilles tendinitis.  Once again what seemed to make biomechanical sense is trumped by science.

We think training people to have greater amounts of hip extension as well as ankle dorsiflexion,  as well as appropriate foot and lower extremity biomechanics with the requisite  skill, endurance and strength is a much better way to treat Achilles tendonitis regardless of whether they’re wearing footwear or not.

Dr. Ivo Waerlop, one of The Gait Guys

References:

1. Wearing SC, Reed LF, Hooper SL, et al. Running shoes increase Achilles tendon load in walking: An acoustic propagation study. Med Sci Sports Exerc 2014;46(8):1604-1609.  http://www.ncbi.nlm.nih.gov/pubmed/24500535
2. Reed LF, Urry SR, Wearing SC. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskelet Disord 2013;14:249.
3. Black, Hank. Achilles oddity: Heeled shoes may boost load during gait. In the Moment:Rehabilitation   LER Sept 2014  http://lermagazine.com/news/in-the-moment-rehabilitation/achilles-oddity-heeled-shoes-may-boost-load-during-gait
4. Sinclair J. Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running. Clin Biomech (Bristol, Avon). 2014 Apr;29(4):395-9. doi: 10.1016/j.clinbiomech.2014.02.004. Epub 2014 Feb 23.
5. Rowson S1, McNally C, Duma SM. Can footwear affect achilles tendon loading? Clin J Sport Med. 2010 Sep;20(5):344-9. doi: 10.1097/JSM.0b013e3181ed7e50.

Now THERE”S some internal tibial torsion!

So, this gent came in to see us with L sided knee pain after it collapsed with an audible “pop” during a baseball game. He has +1/+2 laxity in his ACL on that side. He has subpatellar and joint line pain on full flexion, which is limited slightly to 130 (compared to 145 right)

 We know he has internal torsion because a line drawn from the tibial tuberosity dropped inferiorly does not pass through or near the plane of the 2nd metatarsal (more on tibial torsions here)

What would you do? Here’s what we did:

  • acupuncture to reduce swelling
  • took him out of his motion control shoes (which pitch him further outside the saggital plane)
  • gave him propriosensory exercises (1 leg balance: eyes open/ eyes closed; 1 legged mini squats, BOSU ball standing: eyes open/eyes closed)
  • potty squats in a pain free range
  • ice prn
  • asked him to avoid full flexion

Is it any wonder he injured his knee? Imagine placing the FOOT in the saggital plane, which places the knee FAR outside it; now load the joint an twist, OUCH!

Podcast #99: How foot placement, the glutes and cross over gait all come together and make sense.

Topics: Plus, How foot placement, the glutes and cross over gait all come together and make sense. Plus, discussions on vibration,proprioception, cerebellum and movement.

Show Sponsors:

*newbalancechicago.com

*Rocktape.com

A. Link to our server: http://traffic.libsyn.com/thegaitguys/pod_99final.mp3

Podcast Direct Download: http://thegaitguys.libsyn.com/podcast-99-how-foot-placement-the-glutes-and-cross-over-gait-all-come-together-and-make-sense

Other Gait Guys stuff

B. iTunes link:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138
C. Gait Guys online /download store (National Shoe Fit Certification & more !)
http://store.payloadz.com/results/results.aspx?m=80204
D. other web based Gait Guys lectures:
Monthly lectures at : www.onlinece.com type in Dr. Waerlop or Dr. Allen, ”Biomechanics”

-Our Book: Pedographs and Gait Analysis and Clinical Case Studies
Electronic copies available here:

-Amazon/Kindle:
http://www.amazon.com/Pedographs-Gait-Analysis-Clinical-Studies-ebook/dp/B00AC18M3E

-Barnes and Noble / Nook Reader:
http://www.barnesandnoble.com/w/pedographs-and-gait-analysis-ivo-waerlop-and-shawn-allen/1112754833?ean=9781466953895

https://itunes.apple.com/us/book/pedographs-and-gait-analysis/id554516085?mt=11

-Hardcopy available from our publisher:
http://bookstore.trafford.com/Products/SKU-000155825/Pedographs-and-Gait-Analysis.aspx

Show notes:

Evaluating the Differential Electrophysiological Effects of the Focal Vibrator on the Tendon and Muscle Belly in Healthy People ARTICLE in ANNALS OF REHABILITATION MEDICINE · AUGUST 2014 DOI: 10.5535/arm.2014.38.4.494 · Source: PubMed

J Neurophysiol. 2014 Jul 15;112(2):374-83. doi: 10.1152/jn.00138.2014. Epub 2014 Apr 30. A neuromechanical strategy for mediolateral foot placement in walking humans.  Rankin BL

J Neurophysiol. 2015 Oct;114(4):2220-9. doi: 10.1152/jn.00551.2015. Epub 2015 Aug 19.

Hip proprioceptive feedback influences the control of mediolateral stability during human walking.

Roden-Reynolds DC1, Walker MH1, Wasserman CR1, Dean JC2.

Eur Spine J. 2015 May 26. [Epub ahead of print]
Prevalence of gluteus medius weakness in people with chronic low back pain compared to healthy controls.
Cooper NA1, Scavo KM, Strickland KJ, Tipayamongkol N, Nicholson JD, Bewyer DC, Sluka KA.

Prog Brain Res. 2004;143:353-66. Role of the cerebellum in the control and adaptation of gait in health and disease. Thach WT1, Bastian AJ.

You’d have to be smart to walk this lazy, and people are

Research suggests that humans are wired for laziness

http://www.sciencedaily.com/releases/2015/09/150910131451.htm#.VfWquNKaf3s.facebook

Jessica C. Selinger, Shawn M. O’Connor, Jeremy D. Wong, J. Maxwell Donelan. Humans Can Continuously Optimize Energetic Cost during Walking. Current Biology, 2015; DOI: 10.1016/j.cub.2015.08.016