Foot Progression Angle Exaggeration: External Tibial Torsion

Take a look at the tibial tuberosity and then where you think the 2nd metatarsal head would be. What do you see? The 2nd metatarsal is lateral to the tibial tuberosity. You are looking at external tibial torsion. 

Lets see how this external tibail torsion behaves during a knee bending. Observe the medial drift of the knee during weight bearing knee flexion. Many folks would say that the problem here is the increased foot prontation, but that is not where the problem lies, that is where many of the forces are funneling though. The client is pronating more because the external tibial torsion that is creating this appearance has put the knee inside the foot tripods region of stability.

In external tibial torsion there is an external torsion or a “twist” along the length of the tibia (diaphysis or long section). This occurs in this example to the degree that the ankle joint (mortise joint) can no longer cooperate with sagittal knee joint.  When taking a client with external tibial torsion and pre-postioning their foot in a relatively acceptable/normal foot progression angle there is a conflict at the knee, meaning that the knee cannot hinge forward in its usual sagittal plane. In this case with the foot progression angle smaller than what this client would posture the foot, the knee the knee will be forced to drift medially.

Are you looking for torsions of the lower limb in your clients ?

Are you forcing them into foot postures that look better to  you but that which are conflicting to your clients given body mechanics ?  Would you correct this client’s foot turn out (increased progression angle) ? IF you did you would likely cause them knee pain in time.  Would you put them into a stability shoe to try and control the pronation ? Again, you are likely to draw their knee outside the saggital knee hinge that is presently pain free. There is more to shoe fit that just looking at the foot. First do no harm is our mantra ! 

Remember, telling someone to turn their foot in or out because it doesn’t appear correct to your eyes can significantly impair either local or global joints , and often both. Torsions can occur in the talus, the tibia and the femur.

Furthermore, torsions can have an impact on foot posturing at foot strike and affect the limbs loading response, from foot to core and even arm swing can be altered.  Letting your foot fall naturally beneath your body does not mean that you have the clean anatomy to do so without a short term or long term cost. 

This is some of the toughest stuff you will deal with clinically. The fence is narrow, if you do to little correction you fall off the fence into the wrong yard and create problems. If you do to much correction you get the same result. These torsional issues are a delicate balancing act many times. You first have to know what you have, then you have to know where the fix is, and then how much is safe.  Tricky stuff. This is exactly why in some folks a stability shoe can be magic or tragic and in others dropping into zero drop minimalism can be magic or tragic.  

Want more on torsion and versions ?  Type the words into the search box on our blog. We have plenty of good info for you.

Shawn and Ivo, The Gait Guys

The Calcaneo Cuboid Locking Mechanism

Do you know what this is? You should if you walk or run!

It is the mechanism by which the tendon of the peroneus longus travels behind the lateral malleolus of the ankle, travels underfoot, around the cuboid to insert into the lateral aspect of the base of the 1st metatarsal and adjacent 1st cunieform (see above)

For more cool info on the peroneus longus, see our blog post here.

When the peroneus longus contracts, in addition to plantar flexing the 1st ray, it everts the cuboid and locks the lateral column of the foot, minimizing muscular strain required to maintain the foot in supination (the locked position for propulsion). Normally, muscle strength alone is insufficient to perform this job and it requires some help from the adjacent articulations.

In addition, the soleus maintains spuination during propulsion by plantar flexing and inverting rear foot via the subtalar joint. This is assisted by the peroneus brevis and tertius which also dorsflex and evert the lateral column, helping keep it locked. Can you see why the peroneii are so important?

signs of a faulty calcaneo cuboid locking mechanism

  • weak peroneus longus, brevis and or tertius
  • excessive rear or midfoot pronation
  • low arch during ambulation
  • poor or low gear “push off”
  • subluxated cuboid

The calcaneo cuboid locking mechanism. Essential for appropriate supination and ambulation. Insufficiency, coming to a foot you will soon examine.

The Gait Guys. Improving your GQ (Gait Quotient) each and every day with every post we write.

Podcast 69: Advanced Arm Swing Concepts, Compensation Patterns and more

Plus: Foot Arch Pathomechanics, Knee Pivot Shift and Sesamoiditis and more !

A. Link to our server: 

http://traffic.libsyn.com/thegaitguys/pod_70ff.mp3

Direct Download: http://thegaitguys.libsyn.com/podcast-70

Permalink: 

B. iTunes link:

https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

C. Gait Guys online /download store (National Shoe Fit Certification and more !) :

http://store.payloadz.com/results/results.aspx?m=80204

D. other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen,  ”Biomechanics”

______________

Today’s Show notes:

1. “Compensation depends on the interplay of multiple factors: The availability of a compensatory response, the cost of compensation, and the stability of the system being perturbed.”
What happens when we change the length of one leg? How do we compensate? Here is a look at the short term consequences of a newly acquired leg length difference.
http://www.ncbi.nlm.nih.gov/pubmed/24857934
2. Medial Longitudinal Arch Mechanics Before and After a 45 Minute Run
http://www.japmaonline.org/doi/abs/10.7547/12-106.1

3. Several months ago we talked about the pivot-shift phenomenon. It is frequently missed clinically because it can be a tricky hands on assessment of the knee joint. In this article “ACL-deficient patients adopted the … .* Remember: what you see in their gait is not their problem, it is their strategy around their problem.
http://www.clinbiomech.com/article/S0268-0033(10)00264-0/abstract

4.Do you know the difference between a forefoot supinatus and a forefoot varus?
“A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous deformity that induces subtalar joint pronation, whereas forefoot supinatus is acquired and develops because of subtalar joint pronation. “
http://www.ncbi.nlm.nih.gov/pubmed/24980930

5. Pubmed abstract link: http://www.ncbi.nlm.nih.gov/pubmed/24865637
Gait Posture. 2014 Jun;40(2):321-6. Epub 2014 May 6.
Arm swing in human walking: What is their drive?
Goudriaan M, Jonkers I, van Dieen JH, Bruijn SM

6. This is Your Brain On Guitar
http://www.the-open-mind.com/this-is-your-brain-on-guitar/

Podcast 69: Advanced Arm Swing Concepts, Compensation Patterns and more

Plus: Foot Arch Pathomechanics, Knee Pivot Shift and Sesamoiditis and more !

A. Link to our server: 

http://traffic.libsyn.com/thegaitguys/pod_70ff.mp3

Direct Download: http://thegaitguys.libsyn.com/podcast-70

Permalink: 

B. iTunes link:

https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

C. Gait Guys online /download store (National Shoe Fit Certification and more !) :

http://store.payloadz.com/results/results.aspx?m=80204

D. other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen,  ”Biomechanics”

______________

Today’s Show notes:

1. “Compensation depends on the interplay of multiple factors: The availability of a compensatory response, the cost of compensation, and the stability of the system being perturbed.”
What happens when we change the length of one leg? How do we compensate? Here is a look at the short term consequences of a newly acquired leg length difference.
http://www.ncbi.nlm.nih.gov/pubmed/24857934
2. Medial Longitudinal Arch Mechanics Before and After a 45 Minute Run
http://www.japmaonline.org/doi/abs/10.7547/12-106.1

3. Several months ago we talked about the pivot-shift phenomenon. It is frequently missed clinically because it can be a tricky hands on assessment of the knee joint. In this article “ACL-deficient patients adopted the … .* Remember: what you see in their gait is not their problem, it is their strategy around their problem.
http://www.clinbiomech.com/article/S0268-0033(10)00264-0/abstract

4.Do you know the difference between a forefoot supinatus and a forefoot varus?
“A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous deformity that induces subtalar joint pronation, whereas forefoot supinatus is acquired and develops because of subtalar joint pronation. “
http://www.ncbi.nlm.nih.gov/pubmed/24980930

5. Pubmed abstract link: http://www.ncbi.nlm.nih.gov/pubmed/24865637
Gait Posture. 2014 Jun;40(2):321-6. Epub 2014 May 6.
Arm swing in human walking: What is their drive?
Goudriaan M, Jonkers I, van Dieen JH, Bruijn SM

6. This is Your Brain On Guitar
http://www.the-open-mind.com/this-is-your-brain-on-guitar/

So you want to do a Gait Analysis: Part 4

This is the 4th in a multi part series. If you missed part 1, click here. For part 2, click here, part 3, click here

These are the basics, folks. We hope this is a review for many.

A quick review of the walking gait cycle components:

There are two phases of gait: stance and swing

Stance consists of:

  • Initial contact
  • Loading response
  • Midstance
  • Terminal stance
  • Pre-swing

Swing consists of:

  • initial (early) swing
  • mid swing
  • terminal (late) swing

today, lets explore Terminal stance

Terminal stance is one of the last stages of stance phase. Following midstance, where maximal pronation should be occurring, the stance phase foot should now begin supinating, initiated by the the opposite foot in swing phase moving forward of the center of gravity. 

Lets look at what is happening here at the major anatomical areas:

Foot

  • Supination begins from the opposite, swing phase leg (see above)
  •  the calcaneus inverts to neutral
  •  the center of gravity of the foot raises from its lowest point at midstance
  • The lower leg should begin externally rotating (as it follows the talus)
  • The thigh should follow the lower leg and should also be externally rotating; sometimes to a greater extent due to the shape and size of the medial condyle of the femur (which is larger than the lateral)
  • these actions are perpetuated by the gluteus maximus and posterior fibers of the gluteus medius, as well as posterior compartment of the lower leg including the flexor digitorum longus, flexor hallucis longus, peroneus longus and tibialis posterior
Ankle
  • The ankle should be 5 degrees dorsiflexed and in ankle rocker
  • the calcaneocuboid locking mechanism should be engaging to assist the peroneus longus in getting the head of the 1st metatarsal to the ground

Knee

  • near or at full extension. This is perpetuated by the quadriceps and biceps femoris, contracting concentrically and attenuated by the semi membranosis and tendonosis. The popliteus contracts eccentrically as soon as the knee passes midstance to keep the rates of external rotation of the tibia and femur in congruence.

Hip

  • The hip should be extending to 10 degrees.

Can you picture what is happening? Try and visualize these motions in your mind. Can you understand why you need to know what is going on at each phase to be able to identify problems? If you don’t know what normal looks like, you will have a tougher time figuring out what is abnormal.

Ivo and Shawn. Gait and foot geeks extraordinaire. Helping you to build a better foundation to put all this stuff you are learning on.

pictured used with permission from Foot Orthoses and Other Conservative Forms of Foot Care

Subtle Clues to Ankle Rocker Pathology: How good are your powers of observation ?

There are clues showing you there is motor pathology to ankle dorsiflexion, if you are paying close enough attention.

When we see motor pathology in ankle dorsiflexion we immediately begin to think about impairment to hip extension range of motion, gluteal strength, motor coordination and many other issues.

Here is a simple case. Observation skills are your greatest superpower when it comes to figuring out many gait and movement problems. But, you have to know what to look for and know what they mean before you can even hope to know how to fix things.
This is a simple video. It shows active ankle dorsiflexion in supination. We asked the client (a runner with right heel and persistent sesamoid pain following a healed sesamoid fracture) to perform simple ankle dorsiflexion. This is what we saw.

It should be clear to the observer that the end of the video shows attempted right dorsiflexion pulls the 2-5 toe extensors into the pattern quite aggressively and as a dominating faction. One can see toe abduction and extension with surprisingly little help from the long hallux toe extensor (EHL).  Dorsiflexion also fatigued early on the right. There is only one reason that the lesser toe extensors (EDL & EDB) are being over recruited, it’s because the EHL and tibialis anterior are weak and/or inhibited or have been pattern corrupted for one reason or another. Depending on this smallest of anterior compartment muscles over the EHL and tib anterior will mean that ankle rocker (dorsiflexion) is impaired. It also means that abnormal forefoot valgus posturing is expected (we could make a case for valgus or varus depending on other variables present). Passive ROM assessment confirmed the impaired ankle rocker with barely greater than 90 degrees ankle dorsiflexion ROM. This impairment will possibly do many things including:

  • premature heel rise
  • premature gastrocsoleus engagement
  • accentuated rear foot eversion (Rearfoot pronation)
  • midfoot pronation
  • strain of plantar fascia
  • premature forefoot loading response (strong clue for clients sesamoid fracture and persistent pain)
  • anterior/ posterior shin splints
  • hallux VALgus /bunion formation
  • long toe flexor dominance and many other things.

This clinical find plays nicely into the clients multiple symptoms (plantar pain and sesamoid problems) and functional gait pathology.
Restoring proper motor hierarchy and synchrony to the ankle dorsiflexion team (tib anterior, peroneus tertius, EDL, EHL) will reduce the need for solitary group overuse and impart forces where they should be when they need to be present. Impair the synchrony and problems ensue.

Help your client achieve the motion at the ankle mortise and they do not have to pass the buck into the foot.  Always test for skill, endurance and strength. Endurance is the most often forgotten assessment.  If endurance is lost early, the brain will begin to block out that end range of motion because it cannot be trusted, and thus posterior compartment tightness will be detected. This is an often common source of regional achilles and para-achilles tendonopathy. If your clients symptoms take time during activity to develop looking at the endurance of motor patterns may give the clue to your solution. 

Simple case, but you have to know your normal gait parameters, know functional anatomy and know how impaired mechanics factor into injury. 

Shawn and Ivo

The gait guys

Spine pain and arm swing. Do you truly get this ? You had better.

We have all seen that runner who swings the one  arm more than the other, they may even violently thrust the one arm across the front of the torso. If you have been a spectator half way through any race you have seen this person. And, if you are watching carefully in your gym, lab, office or gait lab  you have seen the accentuated arm swing on one side (or is it the loss of arm swing on the opposite, we discussed some of these games in last weeks blog post here). You have also see the person who is running with a water bottle in their hand and altering their neurological arm-leg swing opposite pairing and thus their anti-phasic shoulder-pelvic girdle pairing (see attached photo). (If you are lost when we discuss the terms phasic and anti-phasic you will want to go and read this previous blog post.

Knowing that which you are seeing in your client is their highest level of neurologic motor compensation, and not likely their problem, represents a higher thought process in a diagnostician. Unfortunately, it also opens a whole bunch of clinical thought process mental gymnastics. 

Our purpose of today’s blog post is to revisit an important aspect of the clinical examination, observation.  Listening and watching (and knowing what you are seeing, and not seeing) are two of the biggest pieces of a clinical exam other than the hands on assessments. One has to be good at all of the pieces.  But then their is the knowledge base that is needed to base the information and choices upon so that the proper path to remedy can be chosen.  Without the knowledge the actions and choices can be dramatically incorrect and devastating to an athlete or client/patient.  Make the wrong choice for a patient and they do not get better, perhaps even get worse. Make the wrong choice for an athlete and you deepen their compensation and increase their risk for injury.  This is one of our pet peeves because we recognize that we have a deep knowledge base and yet we find ourselves without the certainty and answers on a regular basis and yet we see people making similar choices for clients and athlete with only a small piece of the knowledge necessary on their table to make those choices.  If you don’t know what you don’t know, and yet your still swimming in the risky waters, you are already in deep trouble. 

Here are two articles that you should be familiar with. We talk about them in depth in our “arm swing” online course #317 here.  These articles talk about phasic and antiphasic motions of the arms and shoulder-pelvic blocks.  They talk about spine pain and how spine pain clients reduce the antiphasic rotational (axial) nature of the shouder girdle and pelvic girdle. They elude to the subcortial pattern of choice to rotate them as a solid unit to reduce spine rotation, axial loading and compression and that spine pain disables the normal arm-leg pendulums.  If you do not know and  understand these principles, and you are training, treating or coaching people, you are a problem waiting to happen for your client. You, are the problem and your choices could likely hurt your client.  IF you do not know how to address them or fix them safely, it is your job to send them to someone who does. 

So the next time you see an aberrant arm swing, during your exam, your observations and your history better delve into all things relevant. How about that 20 year “healed” ankle fracture that your client dismisses as “oh, but that was 20 years ago, its not part of this problem i am having now”.  How about that episode of frozen shoulder that was “fixed” 15 years ago or that episode of hip or knee pain from falling on ice or the random big toe pain or the headaches ?  If they dismiss all of this because they are just coming to see you for spine pain or because their running partner says their arm swing stinks on the right you had better sit down for a longer ride, because you  know better now.  Unless you prefer to see life through tunnel vision. Sure it is easier, but don’t you want more for your client ?

Sorry for the rant.

Shawn and Ivo, …… the gait guys.

1. Eur Spine J. 2011 Mar;20(3):491-9. doi: 10.1007/s00586-010-1639-8. Epub 2010 Dec 24.
Gait adaptations in low back pain patients with lumbar disc herniation: trunk coordination and arm swing.  Huang YP et al.
2. J Biomech. 2012 Jan 10;45(2):342-7. doi: 10.1016/j.jbiomech.2011.10.024. Epub 2011 Nov 10.

Mechanical coupling between transverse plane pelvis and thorax rotations during gait is higher in people with low back pain.